光动力疗法
光热治疗
化学
单线态氧
癌细胞
生物物理学
小RNA
癌症
纳米技术
癌症研究
胶体金
纳米颗粒
生物化学
材料科学
氧气
医学
内科学
生物
有机化学
基因
作者
Lin Yang,Sha Yu,Yongcun Yan,Sai Bi,Jun‐Jie Zhu
标识
DOI:10.1021/acs.analchem.2c00477
摘要
Stimuli-responsive therapy of cancer with spatial and temporal control is crucial in improving the treatment efficacy and minimizing the side effects. MicroRNA (miRNA) as an important biomarker has become one of the most promising endogenous stimuli for cancer therapy. However, the therapy efficacy is often impeded by the low expression amount of miRNA. Herein, the upconversion nanoparticle@Au (UCNP@Au) core-satellite nanostructures are rationally fabricated for isothermal amplification detection and in situ imaging of microRNA-21 (miR-21) in living cells based on the toehold-mediated strand displacement (TMSD) reaction, which is further applied to miRNA-responsive combined photothermal and photodynamic therapy of breast cancer. The UCNP@Au are constructed by linking AuNPs to photosensitizers Rose Bengal (RB)-loaded UCNPs through DNA hybridization. The upconversion luminescence (UCL) is quenched by AuNPs, resulting in the attenuation of singlet oxygen generation of RB. Once UCNP@Au are internalized into MCF-7 cells, the overexpressed intracellular miR-21 trigger the cyclic disassembly of UCNP@Au through cascade TMSD reactions, which facilitate the restoration of UCL for in situ imaging of miR-21 with signal amplification. Moreover, the released AuNPs are aggregated for photothermal therapy (PTT), while the singlet oxygen generated by RB is enhanced for photodynamic therapy (PDT). Compared with single-mode therapy, the miRNA-activated combinational phototherapy has demonstrated a greatly improved therapeutic efficacy for breast cancer. Therefore, our proposed core-satellite nanostructures cannot only achieve in situ amplified imaging of endogenous miRNA but also provide an effective nanoplatform for stimuli-responsive combinational phototherapy, which hold great prospects in early diagnosis and treatment of cancers.
科研通智能强力驱动
Strongly Powered by AbleSci AI