Motor imagery EEG decoding using manifold embedded transfer learning

脑-机接口 脑电图 计算机科学 解码方法 学习迁移 人工智能 运动表象 模式识别(心理学) 歧管(流体力学) 联合概率分布 歧管对齐 协方差 校准 信号(编程语言) 语音识别 非线性降维 算法 数学 心理学 神经科学 工程类 统计 机械工程 降维 程序设计语言
作者
Yinhao Cai,Qingshan She,Jiyue Ji,Yuliang Ma,Jianhai Zhang,Yingchun Zhang
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:370: 109489-109489 被引量:33
标识
DOI:10.1016/j.jneumeth.2022.109489
摘要

Brain computer interface (BCI) utilizes brain signals to help users interact with external devices directly. EEG is one of the most commonly used techniques for brain signal acquisition in BCI. However, it is notoriously difficult to build a generic EEG recognition model due to significant non-stationarity and subject-to-subject variations, and the requirement for long time training. Transfer learning (TL) is particularly useful because it can alleviate the calibration requirement in EEG-based BCI applications by transferring the calibration information from existing subjects to new subject. To take advantage of geometric properties in Riemann manifold and joint distribution adaptation, a manifold embedded transfer learning (METL) framework was proposed for motor imagery (MI) EEG decoding.First, the covariance matrices of the EEG trials are first aligned on the SPD manifold. Then the features are extracted from both the symmetric positive definite (SPD) manifold and Grassmann manifold. Finally, the classification model is learned by combining the structural risk minimization (SRM) of source domain and joint distribution alignment of source and target domains.Experimental results on two MI EEG datasets verify the effectiveness of the proposed METL. In particular, when there are a small amount of labeled samples in the target domain, METL demonstrated a more accurate and stable classification performance than conventional methods.Compared with several state-of-the-art methods, METL has achieved better classification accuracy, 71.81% and 69.06% in single-to-single (STS), 83.14% and 76.00% in multi-to-single (MTS) transfer tasks, respectively.METL can cope with single source domain or multi-source domains and compared with single-source transfer learning, multi-source transfer learning can improve the performance effectively due to the data expansion. It is effective enough to achieve superior performance for classification of EEG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香菜芋头发布了新的文献求助10
刚刚
刚刚
丘比特应助瑶625采纳,获得10
1秒前
乌滴子发布了新的文献求助10
1秒前
佚小满发布了新的文献求助10
2秒前
乐观碧灵完成签到,获得积分10
3秒前
3秒前
HiK完成签到 ,获得积分10
5秒前
6秒前
祥云完成签到,获得积分10
6秒前
6秒前
6秒前
zzz发布了新的文献求助10
7秒前
科研通AI2S应助111采纳,获得10
9秒前
椰椰发布了新的文献求助10
12秒前
科研通AI5应助777采纳,获得10
12秒前
13秒前
鳗鱼橘子发布了新的文献求助10
14秒前
我是老大应助复杂雪柳采纳,获得10
14秒前
科研通AI2S应助琪小7采纳,获得10
14秒前
Luoyi完成签到 ,获得积分10
15秒前
faye发布了新的文献求助10
16秒前
乐观碧灵发布了新的文献求助10
16秒前
大个应助loveyouxkkt采纳,获得30
16秒前
17秒前
17秒前
叶子发布了新的文献求助10
18秒前
ddhhh完成签到,获得积分10
19秒前
CipherSage应助123采纳,获得10
19秒前
科研通AI5应助老实青采纳,获得10
19秒前
小半完成签到,获得积分10
19秒前
20秒前
NexusExplorer应助英俊的胜采纳,获得10
20秒前
JamesPei应助春酒4采纳,获得10
20秒前
干净的笑卉完成签到,获得积分10
21秒前
疯狂的小越完成签到,获得积分10
21秒前
21秒前
妖妖完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525973
求助须知:如何正确求助?哪些是违规求助? 3106420
关于积分的说明 9280254
捐赠科研通 2804049
什么是DOI,文献DOI怎么找? 1539151
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709462