Oliver’s four-factor model: Validation through causality

篮球 因果推理 因果关系(物理学) 因子(编程语言) 离群值 推论 统计推断 计算机科学 统计 数学 人工智能 心理学 计量经济学 历史 物理 考古 量子力学 程序设计语言
作者
Alessandro Cecchin
出处
期刊:International Journal of Sports Science & Coaching [SAGE Publishing]
卷期号:17 (4): 838-847
标识
DOI:10.1177/17479541211049287
摘要

While there has been a growing interest in sports analysis in recent years, much research first focused on a classical statistical approach and later on an artificial intelligence approach. This article aims instead to propose a causal inference approach to sports analysis. In particular, the present article intends to review the famous four-factor model proposed by Dean Oliver for assessing the winning ability of National Basketball Association (NBA) teams through a causal inference approach. A structural equation model is used to validate Oliver’s model. The present paper considers the winning percentage and the factors’ statistics over entire seasons from [Formula: see text] to [Formula: see text]. The statistics for the [Formula: see text] season are considered only on a subset of the games. This is because the games played in the Orlando bubble under the particular COVID-19 situation have been regarded as outliers compared to the games played in the other NBA seasons, hence they have not been taken into account. The second goal of the article is to analyse if the fitting ability of the four-factor model changes when it is fitted over the pre[Formula: see text] and post[Formula: see text] basketball eras datasets, considering the year [Formula: see text] as the turning point for the NBA playing style.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空发布了新的文献求助10
刚刚
潇洒荧荧发布了新的文献求助10
刚刚
刚刚
听风发布了新的文献求助10
1秒前
隐形曼青应助yclbz采纳,获得10
1秒前
一期一会发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
3秒前
wada酱完成签到,获得积分10
4秒前
Ry0_发布了新的文献求助10
4秒前
5秒前
hd发布了新的文献求助10
5秒前
6秒前
6秒前
huzhennn发布了新的文献求助10
7秒前
一枝安发布了新的文献求助10
7秒前
愉快梦之发布了新的文献求助10
8秒前
8秒前
9秒前
如意完成签到,获得积分10
9秒前
思源应助淡然的蓝天采纳,获得10
9秒前
9秒前
10秒前
11秒前
wmn完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
Ry0_完成签到,获得积分10
15秒前
沉静冰夏完成签到 ,获得积分10
15秒前
Desperado完成签到,获得积分10
15秒前
贾克斯发布了新的文献求助10
16秒前
16秒前
江苏大学完成签到,获得积分20
16秒前
完美世界应助明月清风采纳,获得10
16秒前
可爱的函函应助刘恋采纳,获得10
16秒前
浮游应助抽疯的电风扇13采纳,获得10
17秒前
123完成签到,获得积分10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079