共发射极
偶极子
材料科学
纳米线
平面的
光学
吸收(声学)
光电子学
折射率
近场和远场
光子
物理
计算机图形学(图像)
量子力学
计算机科学
作者
А. Р. Сорокина,Harri Lipsanen,Nicklas Anttu
摘要
We demonstrate dipole-based modeling for designing nanostructured emitters in a stratified surrounding medium in the presence of parasitic absorption, while giving equivalent information about far-field emission as Lorentz reciprocity. We consider the challenging modeling case of a single nanowire with a parasitically absorbing planar top contact layer. The main advantage of our approach is the use of a near-field-to-far-field transformation (NFFT) adapted for stratified surrounding, which speeds up the simulations compared to approaches without such a NFFT. We show how the thickness of the contact layer, nanowire geometry, emitter position within the nanowire, refractive index of encapsulation layer, and orientation of the dipole moment of the emitter strongly affect the extraction of internally emitted photons.
科研通智能强力驱动
Strongly Powered by AbleSci AI