SkillBot: Towards Data Augmentation using Transformer language model and linguistic evaluation

计算机科学 语言模型 变压器 聊天机器人 人工智能 自然语言处理 嵌入 答疑 自然语言 杠杆(统计) 自然语言理解 自然语言生成 机器学习 工程类 电气工程 电压
作者
Suresh Khatri,Muddesar Iqbal,George Ubakanma,Spike van der Vliet-Firth
标识
DOI:10.1109/hccs55241.2022.10090376
摘要

Creating accurate, closed-domain, and machine learning-based chatbots that perform language understanding (intent prediction/detection) and language generation (response generation) requires significant datasets derived from specific knowledge domains. The common challenge in developing a closed-domain chatbot application is the lack of a comprehensive dataset. Such scarcity of the dataset can be complemented by augmenting the dataset with the use of state-of-the-art technologies existing in the field of Natural Language Processing, called 'Transformer Models'. Our applied computing project experimented with a 'Generative Pre-trained Transformer' model, a unidirectional transformer decoder model for augmenting an original dataset limited in size and manually authored. This model uses unidirectional contextual representation i.e., text input is processed from left to right while computing embeddings corresponding to the input sentences. The primary goal of the project was to leverage the potential of a pre-trained transformer-based language model in augmenting an existing, but limited dataset. Additionally, the idea for using the model for text generation and appending the generated embedding to the input embedding supplied was to preserve the intent for the augmented utterances as well as to find a different form of expressions for the same intent which could be expressed by the potential users in the future. Our experiment showed improved performance for understanding language and generation for the chatbot model trained on the augmented dataset indicating that a pre-trained language model can be beneficial for the effective working of natural language-based applications such as a chatbot model trained on the augmented dataset indicating that a pre-trained language model can be beneficial for the effective working of natural language-based applications such as a chatbot.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助曦曦呵呵采纳,获得10
刚刚
1秒前
4秒前
4秒前
贱小贱完成签到,获得积分10
4秒前
科研通AI2S应助Christine采纳,获得10
5秒前
lalaland完成签到,获得积分10
5秒前
研友_842M4n发布了新的文献求助10
6秒前
6秒前
脑洞疼应助SinaiPen采纳,获得10
6秒前
所所应助zjuroc采纳,获得30
9秒前
锦哥发布了新的文献求助10
9秒前
乖乖完成签到,获得积分10
10秒前
mylaodao完成签到,获得积分0
10秒前
12秒前
14秒前
mhl11应助Naruto采纳,获得10
14秒前
Owen应助暖杨羊采纳,获得10
15秒前
雪白的紫翠应助锦哥采纳,获得10
15秒前
江小白发布了新的文献求助10
17秒前
17秒前
17秒前
爱静静应助研友_842M4n采纳,获得10
19秒前
活泼飞鸟完成签到,获得积分10
19秒前
狂野悟空完成签到,获得积分10
20秒前
酒吧舞男茜茜妈完成签到 ,获得积分10
20秒前
天之骄子发布了新的文献求助10
21秒前
zjuroc发布了新的文献求助30
21秒前
23秒前
锦哥完成签到,获得积分20
25秒前
不安太阳完成签到,获得积分10
25秒前
26秒前
26秒前
27秒前
暖杨羊发布了新的文献求助10
27秒前
28秒前
乐乐应助Hai采纳,获得10
28秒前
zjuroc完成签到,获得积分10
29秒前
时生111完成签到 ,获得积分10
29秒前
123发布了新的文献求助10
30秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351004
求助须知:如何正确求助?哪些是违规求助? 2976541
关于积分的说明 8675492
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673751
邀请新用户注册赠送积分活动 664242