A web server for predicting and scanning of IL-5 inducing peptides using alignment-free and alignment-based method

随机森林 计算机科学 人工智能 梯度升压 计算生物学 Boosting(机器学习) 机器学习 数据挖掘 模式识别(心理学) 生物
作者
Leimarembi Devi Naorem,Neelam Sharma,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106864-106864
标识
DOI:10.1016/j.compbiomed.2023.106864
摘要

Interleukin-5 (IL-5) can act as an enticing therapeutic target due to its pivotal role in several eosinophil-mediated diseases. The aim of this study is to develop a model for predicting IL-5 inducing antigenic regions in a protein with high precision. All models in this study have been trained, tested and validated on experimentally validated 1907 IL-5 inducing and 7759 non-IL-5 inducing peptides obtained from IEDB. Our primary analysis indicates that IL-5 inducing peptides are dominated by certain residues like Ile, Asn, and Tyr. It was also observed that binders of a wide range of HLA alleles can induce IL-5. Initially, alignment-based methods have been developed using similarity and motif search. These alignment-based methods provide high precision but poor coverage. In order to overcome this limitation, we explore alignment-free methods which are mainly machine learning-based models. Firstly, models have been developed using binary profiles and eXtreme Gradient Boosting-based model achieved a maximum AUC of 0.59. Secondly, composition-based models have been developed and our dipeptide-based random forest model achieved a maximum AUC of 0.74. Thirdly, random forest model developed using selected 250 dipeptides and achieved AUC 0.75 and MCC 0.29 on validation dataset; best among alignment-free models. In order to improve the performance, we developed an ensemble or hybrid method that combined alignment-based and alignment-free methods. Our hybrid method achieved AUC 0.94 with MCC 0.60 on a validation/independent dataset. The best hybrid model developed in this study has been incorporated into the user-friendly web server and a standalone package named 'IL5pred' (https://webs.iiitd.edu.in/raghava/il5pred/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余南发布了新的文献求助10
刚刚
1秒前
丁丁丁完成签到,获得积分10
1秒前
羽翼发布了新的文献求助10
1秒前
领导范儿应助孙友浩采纳,获得10
1秒前
菜热热发布了新的文献求助10
2秒前
3MB完成签到 ,获得积分10
2秒前
scvshty发布了新的文献求助10
2秒前
红桃小六完成签到,获得积分10
2秒前
WSND发布了新的文献求助10
2秒前
bkagyin应助芷莯采纳,获得10
2秒前
dlr发布了新的文献求助10
3秒前
独特的板凳完成签到,获得积分10
3秒前
刘天霸完成签到,获得积分10
3秒前
3秒前
4秒前
wangxu发布了新的文献求助10
4秒前
吕奎完成签到,获得积分10
5秒前
5秒前
情怀应助尹伊萍采纳,获得10
5秒前
雪白胡萝卜完成签到,获得积分10
5秒前
tk完成签到 ,获得积分10
6秒前
酷波er应助可靠冷霜采纳,获得30
6秒前
7秒前
7秒前
斯文败类应助余南采纳,获得10
8秒前
书双发布了新的文献求助10
8秒前
8秒前
9秒前
yanna发布了新的文献求助30
10秒前
懵懂的小蜜蜂完成签到,获得积分10
10秒前
湖中医发布了新的文献求助10
10秒前
10秒前
11秒前
搞毛啊发布了新的文献求助10
11秒前
华仔应助健忘如松采纳,获得10
12秒前
刘天霸发布了新的文献求助10
12秒前
毛豆应助SPark采纳,获得10
13秒前
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236