A web server for predicting and scanning of IL-5 inducing peptides using alignment-free and alignment-based method

随机森林 计算机科学 人工智能 梯度升压 计算生物学 Boosting(机器学习) 机器学习 数据挖掘 模式识别(心理学) 生物
作者
Leimarembi Devi Naorem,Neelam Sharma,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106864-106864 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.106864
摘要

Interleukin-5 (IL-5) can act as an enticing therapeutic target due to its pivotal role in several eosinophil-mediated diseases. The aim of this study is to develop a model for predicting IL-5 inducing antigenic regions in a protein with high precision. All models in this study have been trained, tested and validated on experimentally validated 1907 IL-5 inducing and 7759 non-IL-5 inducing peptides obtained from IEDB. Our primary analysis indicates that IL-5 inducing peptides are dominated by certain residues like Ile, Asn, and Tyr. It was also observed that binders of a wide range of HLA alleles can induce IL-5. Initially, alignment-based methods have been developed using similarity and motif search. These alignment-based methods provide high precision but poor coverage. In order to overcome this limitation, we explore alignment-free methods which are mainly machine learning-based models. Firstly, models have been developed using binary profiles and eXtreme Gradient Boosting-based model achieved a maximum AUC of 0.59. Secondly, composition-based models have been developed and our dipeptide-based random forest model achieved a maximum AUC of 0.74. Thirdly, random forest model developed using selected 250 dipeptides and achieved AUC 0.75 and MCC 0.29 on validation dataset; best among alignment-free models. In order to improve the performance, we developed an ensemble or hybrid method that combined alignment-based and alignment-free methods. Our hybrid method achieved AUC 0.94 with MCC 0.60 on a validation/independent dataset. The best hybrid model developed in this study has been incorporated into the user-friendly web server and a standalone package named 'IL5pred' (https://webs.iiitd.edu.in/raghava/il5pred/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助WN采纳,获得10
1秒前
yyr发布了新的文献求助10
3秒前
小小怪完成签到,获得积分20
4秒前
5秒前
6秒前
完美毛豆发布了新的文献求助10
6秒前
大大完成签到,获得积分10
7秒前
英俊的铭应助yyr采纳,获得10
8秒前
Tracy完成签到,获得积分10
8秒前
bai发布了新的文献求助10
9秒前
小小怪发布了新的文献求助10
9秒前
H与K完成签到,获得积分10
10秒前
蒋中豪2.0完成签到 ,获得积分10
13秒前
renee_yok完成签到 ,获得积分10
15秒前
16秒前
Jasper应助怡然诗霜采纳,获得10
20秒前
21秒前
WN发布了新的文献求助10
22秒前
康康舞曲完成签到 ,获得积分10
22秒前
24秒前
蒋中豪完成签到 ,获得积分10
24秒前
24秒前
Jasmine Mai完成签到,获得积分10
25秒前
25秒前
nanfang完成签到 ,获得积分10
26秒前
lhj完成签到,获得积分10
27秒前
李雨珍发布了新的文献求助10
28秒前
义气尔安完成签到,获得积分10
29秒前
30秒前
30秒前
小二郎应助褪寂采纳,获得10
32秒前
Owen应助俏皮觅风采纳,获得10
32秒前
34秒前
小猴儿发布了新的文献求助10
34秒前
高海龙完成签到 ,获得积分10
35秒前
眼睛大莆发布了新的文献求助10
36秒前
顾矜应助log采纳,获得10
36秒前
天才瞳瞳完成签到 ,获得积分10
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450