Multi-scale multi-hierarchy attention convolutional neural network for fetal brain extraction

卷积神经网络 特征提取 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 核(代数) 计算机视觉 数学 语言学 组合数学 哲学
作者
Liang Sun,Wei Shao,Qi Zhu,Meiling Wang,Gang Li,Daoqiang Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:133: 109029-109029 被引量:4
标识
DOI:10.1016/j.patcog.2022.109029
摘要

Fetal brain extraction from in utero magnetic resonance imaging (MRI) scans is a key step for fetal brain development analysis. As the unpredicted fetal motion and maternal breathing generally result in blurring and ghosting in the slices of phase encoding direction, using the conventional 3D convolutional neural networks for fetal brain extraction with pseudo 3D fetal brain MR scans will lead to sub-optimal extraction performance. To address this issue, in this paper, we propose a novel multi-scale multi-hierarchy attention convolutional neural network (MSMHA-CNN) for fetal brain extraction in MR images. Specifically, to effectively utilize the 3D contextual information of the in utero MR image for fetal brain extraction, we employ multiple convolutional operations with different local receptive fields (i.e., with different kernel sizes) in each layer to learn the multi-scale feature representation for fetal brain extraction. To effectively use the learned multi-scale feature maps, we introduce a channel-wise spatial attention architecture to adaptively fuse those multi-scale feature maps derived from convolutional operations with different kernel sizes. In this way, the learned multi-scale features can be explicitly used to fetal brain extraction process. Besides, to take advantage of high-level feature maps at all spatial resolutions, we adopt the feature pyramid architecture to learn multi-hierarchy features for boosting the performance. We compare our proposed method with several state-of-the-art methods on two in utero MRI scan datasets (a total of 180 scans) for fetal brain extraction. The experimental results suggest the superior performance of the proposed MSMHA-CNN in comparison with its competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小夏完成签到 ,获得积分10
2秒前
7秒前
白衣修身发布了新的文献求助10
9秒前
抹茶冰淇淋完成签到 ,获得积分10
11秒前
12秒前
寻道图强应助无奈的灵松采纳,获得30
17秒前
lhh1213发布了新的文献求助10
19秒前
22秒前
du发布了新的文献求助10
22秒前
852应助dong采纳,获得10
24秒前
26秒前
x小猫发布了新的文献求助10
28秒前
28秒前
yqzhang发布了新的文献求助10
31秒前
doctorw完成签到,获得积分10
32秒前
风趣的含海完成签到,获得积分10
33秒前
33秒前
科目三应助daydayup采纳,获得10
33秒前
34秒前
dong发布了新的文献求助10
37秒前
Katherine发布了新的文献求助10
37秒前
牛X完成签到,获得积分10
41秒前
daydayup完成签到,获得积分10
41秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
42秒前
大模型应助科研通管家采纳,获得10
42秒前
完美世界应助科研通管家采纳,获得10
42秒前
彭于晏应助科研通管家采纳,获得10
42秒前
深情安青应助科研通管家采纳,获得10
42秒前
42秒前
小二郎应助郝宝真采纳,获得10
43秒前
科研通AI2S应助hnlgdx采纳,获得10
45秒前
星辰大海应助霸气雪珍采纳,获得10
45秒前
daydayup发布了新的文献求助10
47秒前
50秒前
戴衡霞完成签到,获得积分10
51秒前
oceanao应助卜念采纳,获得10
52秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162987
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902734
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187