Osteoporosis treatment using stem cell-derived exosomes: a systematic review and meta-analysis of preclinical studies

骨质疏松症 医学 干细胞 微泡 外体 干细胞疗法 科克伦图书馆 荟萃分析 骨矿物 内科学 生物信息学 移植 生物 细胞生物学 小RNA 生物化学 基因
作者
Xiaoyu He,Yangbin Wang,Zhihua Liu,Yiyong Weng,Shupeng Chen,Qunlong Pan,Yizhong Li,Hanshi Wang,Shu Lin,Haiming Yu
出处
期刊:Stem Cell Research & Therapy [Springer Nature]
卷期号:14 (1) 被引量:12
标识
DOI:10.1186/s13287-023-03317-4
摘要

Abstract Background The increasing incidence of osteoporosis in recent years has aroused widespread public concern; however, existing effective treatments are limited. Therefore, new osteoporosis treatment methods, including stem cell transplantation and exosome therapy, have been proposed and are gaining momentum. Exosomes are considered to have greater potential for clinical application owing to their immunocompatibility. This study summarises the latest evidence demonstrating the efficacy of exosomes in improving bone loss in the treatment of osteoporosis. Main text This systematic review and meta-analyses searched PubMed, Embase, and Cochrane Library databases from inception to 26 March 2022 for osteoporosis treatment studies using stem cell-derived exosomes. Six endpoints were selected to determine efficacy: bone mineral density, trabecular bone volume/tissue volume fraction, trabecular number, trabecular separation, trabecular thickness, and cortical thickness. The search generated 366 citations. Eventually, 11 articles that included 15 controlled preclinical trials and 242 experimental animals (rats and mice) were included in the meta-analysis. Conclusion The results were relatively robust and reliable despite some publication biases, suggesting that exosome treatment increased bone mass, improved bone microarchitecture, and enhanced bone strength compared with placebo treatments. Moreover, stem cell-derived exosomes may favour anabolism over catabolism, shifting the dynamic balance towards bone regeneration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
小黄发布了新的文献求助10
3秒前
3秒前
小杨发布了新的文献求助10
4秒前
chi发布了新的文献求助10
4秒前
刘能发布了新的文献求助10
4秒前
简单觅儿完成签到,获得积分10
4秒前
祖丽完成签到,获得积分10
5秒前
繁荣的鑫发布了新的文献求助10
5秒前
5秒前
顾矜应助雨林采纳,获得10
6秒前
方伟达完成签到,获得积分10
6秒前
a812_wangwang完成签到,获得积分10
7秒前
JuinZhu完成签到,获得积分10
7秒前
一样不一样完成签到,获得积分10
7秒前
Akim应助瑶林采纳,获得10
8秒前
mmmio应助xxxxxXPoVo采纳,获得10
8秒前
特务兔关注了科研通微信公众号
9秒前
豆米发布了新的文献求助10
9秒前
10秒前
hhrr发布了新的文献求助10
11秒前
12秒前
赘婿应助云宝采纳,获得10
12秒前
Aric完成签到,获得积分10
17秒前
所所应助小杨采纳,获得10
17秒前
18秒前
科研通AI5应助刘能采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
22秒前
22秒前
lijain完成签到,获得积分10
22秒前
赘婿应助a812_wangwang采纳,获得10
22秒前
22秒前
cdercder应助科研通管家采纳,获得30
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
PENG应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514588
求助须知:如何正确求助?哪些是违规求助? 3096951
关于积分的说明 9233306
捐赠科研通 2791978
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031