Gravity-Driven Separation for Enrichment of Rare Earth Elements Using Lanthanide Binding Peptide-Immobilized Resin

镧系元素 稀土 化学 色谱法 材料科学 地质学 矿物学 有机化学 生物化学 离子
作者
Hrishitha Sree,Gitanjali Swarup,Sharad Gupta,Karthik Pushpavanam
出处
期刊:ACS applied bio materials [American Chemical Society]
标识
DOI:10.1021/acsabm.3c01280
摘要

Rare Earth Elements (REEs) constitute indispensable raw materials and are employed in a diverse range of devices, including but not limited to smartphones, electric vehicles, and clean energy technologies. While there is an increase in demand for these elements, there is a global supply challenge due to limited availability and geopolitical factors affecting their procurement. A crucial step in manufacturing these devices involves utilizing highly pure REEs, often obtained through complex and nonsustainable processes. These processes are vital in isolating individual REEs from mixtures containing non-REEs and other REEs. There exists an urgent requirement to explore alternative techniques that enable the selective recovery of REEs through more energy-efficient processes. To overcome the limitations mentioned above, we developed a microbead-based technology featuring immobilized lanthanide binding peptides (LBPs) for the selective adsorption of REEs. This technology does not require the utilization of external stimuli but uses gravity-based separation processes to separate the bound REE from the unbound REE. We demonstrate this technology's potential by enriching two relevant REEs (Europium and Terbium). Additionally, we propose a mechanism whereby REEs bind selectively to a particular LBP, leveraging the distinctive physicochemical characteristics of both the REE and the LBP. Moreover, these LBPs exhibit no binding affinity toward other frequently encountered industrial ions. Finally, we demonstrate the recovery of REEs through a change in system conditions and assess the reusability of the microbeads for subsequent adsorption cycles. We anticipate that this approach will address the challenges of REE recovery and demonstrate the potential of biomolecular strategies in advancing sustainable resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jarvis完成签到,获得积分10
1秒前
稳赚赚完成签到,获得积分10
1秒前
李嘉图的栗子完成签到,获得积分10
2秒前
程程完成签到,获得积分10
3秒前
Bsisoy完成签到,获得积分10
3秒前
科研通AI2S应助纯情的远山采纳,获得30
3秒前
4秒前
huangqqk完成签到,获得积分10
4秒前
ZERO完成签到,获得积分10
4秒前
852应助Joyceban采纳,获得10
4秒前
大亮发布了新的文献求助10
4秒前
XIAO完成签到,获得积分10
4秒前
无奈的凌寒完成签到,获得积分10
5秒前
烟花应助luyao970131采纳,获得10
5秒前
5秒前
6秒前
车剑锋完成签到,获得积分10
6秒前
6秒前
科目三应助淡定汉堡采纳,获得10
6秒前
8秒前
霡霂完成签到,获得积分10
8秒前
tao完成签到,获得积分10
8秒前
yhq发布了新的文献求助10
8秒前
陈功人士发布了新的文献求助10
9秒前
向静完成签到,获得积分10
9秒前
柔弱的兔子完成签到,获得积分10
10秒前
purple完成签到 ,获得积分10
10秒前
zhouleiwang完成签到,获得积分10
10秒前
加油完成签到,获得积分10
11秒前
欢呼曼荷完成签到,获得积分10
11秒前
FashionBoy应助carjae采纳,获得20
12秒前
13秒前
chenlc发布了新的文献求助10
13秒前
摆与烂的日常完成签到 ,获得积分10
13秒前
完美世界应助小吴同志采纳,获得10
14秒前
韩邹光完成签到,获得积分10
14秒前
14秒前
xyawl425完成签到,获得积分10
14秒前
14秒前
一夜暴富完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147019
求助须知:如何正确求助?哪些是违规求助? 2798354
关于积分的说明 7828125
捐赠科研通 2454959
什么是DOI,文献DOI怎么找? 1306544
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565