荧光
次氯酸
氧化应激
线粒体
化学
氧化磷酸化
内生
程序性细胞死亡
生物物理学
细胞生物学
生物化学
细胞凋亡
生物
物理
光学
作者
Bo Zhao,Xionghao Xu,Xin Wen,Qingqing Liu,Chao Dong,Qingkun Yang,Chunhua Fan,Juyoung Yoon,Zhengliang Lü
标识
DOI:10.1021/acs.analchem.4c00328
摘要
Hypochlorous acid (HClO) is a typical endogenous ROS produced mainly in mitochondria, and it has strong oxidative properties. Abnormal HClO levels lead to mitochondrial dysfunction, strongly associated with various diseases. It has been shown that HClO shows traces of overexpression in cells of both ferroptosis and hepatocellular carcinoma (HCC). Therefore, visualization of HClO levels during ferroptosis of HCC is important to explore its physiological and pathological roles. So far, there has been no report on the visualization of HClO in ferroptosis of HCC. Thus, we present a ratiometric near-infrared (NIR) fluorescent probe Mito-Rh-S which visualized for the first time the fluctuation of HClO in mitochondria during ferroptosis of HCC. Mito-Rh-S has an ultrafast response rate (2 s) and large emission shift (115 nm). Mito-Rh-S was constructed based on the PET sensing mechanism and thus has a high signal-to-noise ratio. The cell experiments of Mito-Rh-S demonstrated that Fe2+- and erastin-induced ferroptosis in HepG2 cells resulted in elevated levels of mitochondrial HClO and that high concentration levels of Fe2+ and erastin cause severe mitochondrial damage and oxidative stress and had the potential to kill HepG2 cells. By regulating the erastin concentration, erastin induction time, and treatment of the ferroptosis model, Mito-Rh-S can accurately detect the fluctuation of mitochondrial HClO levels during ferroptosis in HCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI