Molecule Dipole and Steric Hindrance Engineering to Modulate Electronic Structure of PTCDA/PTA for Highly Efficient Photocatalytic Hydrogen Evolution and Antibiotics Degradation

光催化 材料科学 位阻效应 光降解 密度泛函理论 堆积 光化学 分子 计算化学 化学 有机化学 催化作用
作者
Weili Yu,Ningjie Fang,Ruobing Wang,Zhaobing Liu,Yinghao Chu,Chenxi Huang
出处
期刊:Advanced Functional Materials [Wiley]
被引量:9
标识
DOI:10.1002/adfm.202314894
摘要

Abstract Insufficient charge separation and slow exciton transport severely limit the utilization of perylene‐plane‐based organic photocatalysts. Herein, a novel PTCDA/PTA (perylene‐3,4,9,10‐tetracarboxylic dianhydride/perylenetetracarboxylic acid) is successfully prepared for the first time by the in situ crystallization of PTA on the surface of PTCDA through π – π interaction. The PTCDA/PTA loading with 8%PTCDA showed the optimum photocatalytic performance. The photocatalytic H 2 evolution rate reached 45.06 mmol g −1 h −1 , which is 1.93‐fold and 4506.00‐fold higher than that of pure PTA and PTCDA. Meanwhile, it also exhibited excellent antibiotics photodegradation activities, in which both the removal efficiency of tetracycline hydrochloride (TC‐HCl) and ofloxacin (OFL) are more over 90% within 30 min. By modulating the structures of perylene plane, the steric hindrance and internal dipole moments can be precisely tuned. These lead to the change of stacking mode, promoting the degree of π – π stacking and formation of strong internal electric field, while improved the photocatalytic activity. Excited state density functional theory (DFT) calculations unveil the redistribution of electron‐hole pairs, which obeys a type II mechanism. The proposed photocatalytic mechanism is determined by liquid chromatography‐mass spectrometry (LC‐MS). Besides, the toxicities of the degradation products are also evaluated. The work provides useful strategy for the design of high‐performance and multifunctional photocatalysts toward water remediation and energy production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc关闭了cc文献求助
1秒前
xun驳回了大模型应助
2秒前
Owen应助Leeny采纳,获得10
2秒前
childheart发布了新的文献求助10
2秒前
zzm完成签到,获得积分10
2秒前
乐乐应助Leo采纳,获得10
2秒前
3秒前
顺利雨安发布了新的文献求助10
4秒前
慕青应助瓜瓜瓜咕采纳,获得10
4秒前
默默雨竹发布了新的文献求助20
4秒前
希望天下0贩的0应助kiwi采纳,获得10
5秒前
刘柳完成签到 ,获得积分10
5秒前
5秒前
旦旦发布了新的文献求助10
5秒前
6秒前
zzm发布了新的文献求助10
6秒前
白鸽应助peter采纳,获得10
7秒前
拓跋从阳发布了新的文献求助10
8秒前
科研通AI2S应助啦啦啦采纳,获得10
9秒前
pluto应助俊逸的大树采纳,获得10
10秒前
Ygy完成签到,获得积分10
10秒前
LEMONS完成签到 ,获得积分10
11秒前
所所应助书羽采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得30
12秒前
12秒前
13秒前
HYJ完成签到,获得积分10
13秒前
childheart完成签到,获得积分10
13秒前
kiwi完成签到,获得积分10
13秒前
酷波er应助Adel采纳,获得10
14秒前
Yi关注了科研通微信公众号
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136060
求助须知:如何正确求助?哪些是违规求助? 2786881
关于积分的说明 7779829
捐赠科研通 2443052
什么是DOI,文献DOI怎么找? 1298859
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870