模型预测控制
控制理论(社会学)
序列(生物学)
同步电动机
电压
计算机科学
模式(计算机接口)
电流(流体)
病媒控制
零(语言学)
电磁线圈
工程类
拓扑(电路)
感应电动机
控制(管理)
电气工程
人工智能
语言学
哲学
遗传学
生物
操作系统
作者
Wenqing Zhang,Xinzhen Wu,Haifeng Wang
标识
DOI:10.1109/icems59686.2023.10344993
摘要
Model-based predictive control (MPC) heavily depends on the precision of the machine parameters. In order to solve this problem, the model-free predictive control (MFPC) approach for open-end winding PMSM drives is proposed in this study. Sliding mode observers are used to estimate the unknown sections of the ultra-local model. The same DC bus is shared by an open-end winding PMSM supplied by two inverters, and the common bus topology will provide zero sequence current. In this study, zero common-mode voltage (CMV) vector is used as a finite control set to remove zero sequence current in open-end winding PMSM. Finally, the simulation demonstrates that, when the motor parameter is unpredictable, the suggested technique performs better dynamically and steadily than standard MPC.
科研通智能强力驱动
Strongly Powered by AbleSci AI