亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ErrorCLR: Semantic Error Classification, Localization and Repair for Introductory Programming Assignments

计算机科学 杠杆(统计) 任务(项目管理) 人工智能 错误检测和纠正 匹配(统计) 机器学习 图形 理论计算机科学 算法 统计 数学 管理 经济
作者
Siqi Han,Y Wang,Xuesong Lu
标识
DOI:10.1145/3539618.3591680
摘要

Programming education at scale increasingly relies on automated feedback to help students learn to program. An important form of feedback is to point out semantic errors in student programs and provide hints for program repair. Such automated feedback depends essentially on solving the tasks of classification, localization and repair of semantic errors. Although there are datasets for the tasks, we observe that they do not have the annotations supporting all three tasks. As such, existing approaches for semantic error feedback treat error classification, localization and repair as independent tasks, resulting in sub-optimal performance on each task. Moreover, existing datasets either contain few programming assignments or have few programs for each assignment. Therefore, existing approaches often leverage rule-based methods and evaluate them with a small number of programming assignments. To tackle the problems, we first describe the creation of a new dataset COJ2022 that contains 5,914 C programs with semantic errors submitted to 498 different assignments in an introductory programming course, where each program is annotated with the error types and locations and is coupled with the repaired program submitted by the same student. We show the advantages of COJ2022 over existing datasets on various aspects. Second, we treat semantic error classification, localization and repair as dependent tasks, and propose a novel two-stage method ErrorCLR to solve them. Specifically, in the first stage we train a model based on graph matching networks to jointly classify and localize potential semantic errors in student programs, and in the second stage we mask error spans in buggy programs using information of error types and locations and train a CodeT5 model to predict correct spans. The predicted spans replace the error spans to form repaired programs. Experimental results show that ErrorCLR remarkably outperforms the comparative methods for all three tasks on COJ2022 and other public datasets. We also conduct a case study to visualize and interpret what is learned by the graph matching network in ErrorCLR. We have released the source code and COJ2022 at https://github.com/DaSESmartEdu/ErrorCLR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
12秒前
可乐完成签到 ,获得积分10
15秒前
17秒前
思源应助聪聪采纳,获得10
18秒前
李健的小迷弟应助草木青采纳,获得10
19秒前
呱呱乐完成签到,获得积分20
21秒前
22秒前
可乐发布了新的文献求助10
24秒前
呱呱乐发布了新的文献求助10
25秒前
可乐发布了新的文献求助10
26秒前
ezekiet完成签到 ,获得积分10
27秒前
30秒前
30秒前
30秒前
32秒前
聪聪发布了新的文献求助10
36秒前
zbw发布了新的文献求助10
38秒前
秋夏发布了新的文献求助10
40秒前
orixero应助酷酷沛芹采纳,获得10
46秒前
L_MD完成签到,获得积分10
47秒前
JIAO完成签到,获得积分10
55秒前
56秒前
Owen应助lingzhiyi采纳,获得10
56秒前
Liu发布了新的文献求助30
58秒前
ceeray23应助苏苏采纳,获得10
1分钟前
安详无心发布了新的文献求助10
1分钟前
1分钟前
lingzhiyi发布了新的文献求助10
1分钟前
直率芮完成签到 ,获得积分10
1分钟前
三点水完成签到,获得积分10
1分钟前
1分钟前
1分钟前
沈家宁发布了新的文献求助10
1分钟前
1分钟前
Evaporate发布了新的文献求助10
2分钟前
2分钟前
2分钟前
keyanbaby完成签到,获得积分10
2分钟前
Suzy应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422838
求助须知:如何正确求助?哪些是违规求助? 3023211
关于积分的说明 8903819
捐赠科研通 2710590
什么是DOI,文献DOI怎么找? 1486598
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682330