Attention Based Cross-Domain Synthesis and Segmentation From Unpaired Medical Images

分割 计算机科学 一致性(知识库) 人工智能 对比度(视觉) 模式识别(心理学) 图像分割 领域(数学分析) 市场细分 计算机视觉 数学 数学分析 业务 营销
作者
Xiaoming Liu,Jingling Pan,Xiao Li,Xiangkai Wei,Zhipeng Liu,Zhifang Pan,Jinshan Tang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 917-929 被引量:3
标识
DOI:10.1109/tetci.2023.3296499
摘要

Medical images from different modalities, contrast sequences, and settings can provide diverse information in clinical applications and medical analysis. However, some modalities or contrast sequences may be missing or degraded due to strict timing and artifacts during acquisition, leaving many unpaired data. Therefore, it is meaningful to synthesize realistic medical images with unpaired data. This article proposed a general multi-task method for end-to-end cross-domain synthesis and segmentation network, named SSA-Net, based on cycle generative adversarial network (CycleGAN), using unpaired data for training. A gradient-consistency loss is introduced to supervise the synthesis around the contour, refining the boundaries in synthesized images. And a special shape-consistency term is designed to constrain the anatomical structure in synthesized images, guiding segmentation without target labels. Besides, we introduce the attention mechanism into the generators to focus on some hard-to-learn regions in the images. The FC-DenseNet is employed as a segmentation network to enhance segmentation. Our results demonstrate that the proposed SSA-Net can achieve an S-score of 0.895 on CT images of the CHAOS dataset and a DSC of 0.838 for segmenting the liver, which is a significant increase compared to baseline CycleGAN. Experiment results on four datasets demonstrate the effectiveness of the proposed cross-domain synthesis and segmentation framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助鑫xx采纳,获得10
刚刚
苗芸完成签到 ,获得积分10
刚刚
韦小艺发布了新的文献求助10
刚刚
良辰完成签到,获得积分0
2秒前
磁控达人完成签到,获得积分10
3秒前
直率的乐萱完成签到 ,获得积分10
3秒前
3秒前
华仔应助夏天采纳,获得10
4秒前
顺心醉蝶完成签到 ,获得积分10
4秒前
7秒前
科研通AI5应助韦小艺采纳,获得10
7秒前
阿壮发布了新的文献求助10
7秒前
8秒前
科研通AI5应助复杂的世德采纳,获得10
9秒前
加菲完成签到,获得积分10
12秒前
看火人完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
kkneed发布了新的文献求助10
14秒前
16秒前
16秒前
韦小艺完成签到,获得积分10
16秒前
19秒前
我有一头小毛驴给SUGA的求助进行了留言
19秒前
asdfghjk完成签到,获得积分10
19秒前
kkneed完成签到,获得积分10
20秒前
GuMingyang发布了新的文献求助10
20秒前
夏天发布了新的文献求助10
20秒前
一生所爱完成签到,获得积分10
20秒前
kehan发布了新的文献求助10
23秒前
23秒前
da完成签到,获得积分10
24秒前
小林太郎应助友好羊采纳,获得20
24秒前
天真的莺完成签到,获得积分10
26秒前
26秒前
Jessie发布了新的文献求助20
29秒前
31秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546412
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355739
捐赠科研通 2822124
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723287
科研通“疑难数据库(出版商)”最低求助积分说明 713690