Structural transformations in single-crystalline AgPd nanoalloys from multiscale deep potential molecular dynamics

分子动力学 动力学(音乐) 计算机科学 材料科学 纳米技术 化学物理 化学 计算化学 物理 声学
作者
Longfei Guo,Tao Jin,Shuang Shan,Quan Tang,Zhen Li,Chongyang Wang,Junpeng Wang,Bowei Pan,Q. Wang,Fuyi Chen
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (2) 被引量:2
标识
DOI:10.1063/5.0158918
摘要

AgPd nanoalloys often undergo structural evolution during catalytic reactions; the mechanism underlying such restructuring remains largely unknown due to the use of oversimplified interatomic potentials in simulations. Herein, a deep-learning potential is developed for AgPd nanoalloys based on a multiscale dataset spanning from nanoclusters to bulk configurations, exhibits precise predictions of mechanical properties and formation energies with near-density functional theory accuracy, calculates the surface energies closer to experimental values compared to those obtained by Gupta potentials, and is applied to investigate the shape reconstruction of single-crystalline AgPd nanoalloys from cuboctahedron (Oh) to icosahedron (Ih) geometries. The Oh to Ih shape restructuring is thermodynamically favorable and occurs at 11 and 92 ps for Pd55@Ag254 and Ag147@Pd162 nanoalloys, respectively. During the shape reconstruction of Pd@Ag nanoalloys, concurrent surface restructuring of the (100) facet and internal multi-twinned phase change are observed with collaborative displacive characters. The presence of vacancies can influence the final product and reconstructing rate of Pd@Ag core-shell nanoalloys. The Ag outward diffusion on Ag@Pd nanoalloys is more pronounced in Ih geometry compared to Oh geometry and can be further accelerated by the Oh to Ih deformation. The deformation of single-crystalline Pd@Ag nanoalloys is characterized by a displacive transformation involving the collaborative displacement of a large number of atoms, distinguishing it from the diffusion-coupled transformation of Ag@Pd nanoalloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白书雪发布了新的文献求助30
1秒前
1秒前
1秒前
wusj120完成签到,获得积分10
1秒前
1秒前
肚子圆圆的完成签到,获得积分10
2秒前
背后的语海完成签到 ,获得积分10
2秒前
3秒前
雨淋沐风完成签到,获得积分10
3秒前
3秒前
摆烂大王发布了新的文献求助10
3秒前
友好的匪发布了新的文献求助50
3秒前
CodeCraft应助小钱全采纳,获得10
3秒前
可爱的函函应助hyx采纳,获得10
3秒前
3秒前
4秒前
双楠应助点墨采纳,获得10
5秒前
科研通AI5应助机灵又蓝采纳,获得10
5秒前
wickedzz完成签到,获得积分10
6秒前
6秒前
大模型应助你想读博吗采纳,获得10
6秒前
wusj120发布了新的文献求助10
6秒前
luckin9发布了新的文献求助10
7秒前
李加威完成签到 ,获得积分10
7秒前
灵宝宝发布了新的文献求助10
7秒前
李健的粉丝团团长应助ovo采纳,获得10
7秒前
优雅的怀莲完成签到,获得积分10
7秒前
博修发布了新的文献求助10
7秒前
liao完成签到,获得积分10
7秒前
柏林完成签到,获得积分10
8秒前
8秒前
9秒前
Lucas应助木南采纳,获得10
11秒前
shw完成签到,获得积分10
11秒前
领导范儿应助dake采纳,获得10
11秒前
11秒前
戈屿完成签到 ,获得积分10
12秒前
Cik发布了新的文献求助10
12秒前
13秒前
张华发布了新的文献求助30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556918
求助须知:如何正确求助?哪些是违规求助? 3132301
关于积分的说明 9396543
捐赠科研通 2832443
什么是DOI,文献DOI怎么找? 1556762
邀请新用户注册赠送积分活动 726897
科研通“疑难数据库(出版商)”最低求助积分说明 716131