放牧
草原
草原
过度放牧
草地退化
环境科学
生态系统
保护性放牧
放牧压力
草地生态系统
农学
生态学
牲畜
农林复合经营
生物
作者
Lei Deng,Zhouping Shangguan,Stephen M. Bell,Andrey Soromotin,Changhui Peng,Shaoshan An,Xing Wu,Xingliang Xu,Kaibo Wang,Jianping Li,Zhuangsheng Tang,Weiming Yan,Fengbao Zhang,Jiwei Li,Jianzhao Wu,Yakov Kuzyakov
标识
DOI:10.1007/s44246-023-00051-7
摘要
Abstract Globally, livestock grazing is an important management factor influencing soil degradation, soil health and carbon (C) stocks of grassland ecosystems. However, the effects of grassland types, grazing intensity and grazing duration on C stocks are unclear across large geographic scales. To provide a more comprehensive assessment of how grazing drives ecosystem C stocks in grasslands, we compiled and analyzed data from 306 studies featuring four grassland types across China: desert steppes, typical steppes, meadow steppes and alpine steppes. Light grazing was the best management practice for desert steppes (< 2 sheep ha −1 ) and typical steppes (3 to 4 sheep ha −1 ), whereas medium grazing pressure was optimal for meadow steppes (5 to 6 sheep ha −1 ) and alpine steppes (7 to 8 sheep ha −1 ) leading to the highest ecosystem C stocks under grazing. Plant biomass (desert steppes) and soil C stocks (meadow steppes) increased under light or medium grazing, confirming the ‘ intermediate disturbance hypothesis ’. Heavy grazing decreased all C stocks regardless of grassland ecosystem types, approximately 1.4 Mg ha −1 per year for the whole ecosystem. The regrowth and regeneration of grasslands in response to grazing intensity (i.e., grazing optimization ) depended on grassland types and grazing duration. In conclusion, grassland grazing is a double-edged sword. On the one hand, proper management (light or medium grazing) can maintain and even increase C stocks above- and belowground, and increase the harvested livestock products from grasslands. On the other hand, human-induced overgrazing can lead to rapid degradation of vegetation and soils, resulting in significant carbon loss and requiring long-term recovery. Grazing regimes (i.e., intensity and duration applied) must consider specific grassland characteristics to ensure stable productivity rates and optimal impacts on ecosystem C stocks. Graphical Abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI