Multi-objective optimization and decision making for integrated energy system using STA and fuzzy TOPSIS

托普西斯 数学优化 理想溶液 加权 多目标优化 计算机科学 多准则决策分析 帕累托原理 排名(信息检索) 模糊逻辑 熵(时间箭头) 能源规划 运筹学 数学 人工智能 可再生能源 工程类 电气工程 放射科 医学 物理 量子力学 热力学
作者
Xiaojun Zhou,Tan Wan,Yan Sun,Tingwen Huang,Chunhua Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122539-122539 被引量:19
标识
DOI:10.1016/j.eswa.2023.122539
摘要

Integrated energy system (IES) plays a vital role in achieving energy revolution and the goals of carbon peak and carbon neutrality. The optimal planning of IES is of great significance for improving the overall efficiency of the system and promoting its sustainable development. Focusing on this issue, this paper proposes a planning framework integrating multi-objective optimization with fuzzy multi-criteria decision making (MCDM). In this framework, IES planning is modeled as a multi-objective optimization problem that, for the first time, simultaneously minimizes energy consumption, carbon emissions, and economic costs. Thereafter, the optimization problem is solved by a multi-objective state transition algorithm based on decomposition (MOSTA/D), which generates a Pareto set that realizes multiple conflicting objective tradeoffs. Furthermore, to comprehensively evaluate the Pareto optimal solutions, an evaluation criteria system is established from various perspectives, and a novel MCDM approach is proposed. This approach combines the analytic network process-entropy weighting technique, which takes into account the correlation between criteria as well as subjective preference and objective information, with fuzzy TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) for scientifically ranking and selecting solutions under uncertainty. The simulation results of an IES planning case study demonstrate that the optimal scheme determined by the proposed method achieves the best overall benefit for IES, with significant annual economic cost savings, primary energy savings, and carbon dioxide emission reduction rates of 2.27%, 40.36%, and 56.25%, respectively, proving the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二发布了新的文献求助10
1秒前
solobang发布了新的文献求助10
2秒前
CodeCraft应助Jocelyn7采纳,获得10
2秒前
秋之月完成签到,获得积分10
2秒前
3秒前
cheche关注了科研通微信公众号
3秒前
4秒前
科研小民工应助kento采纳,获得50
5秒前
完美世界应助小萌采纳,获得10
6秒前
6秒前
gaoww完成签到,获得积分10
6秒前
7秒前
WZ0904发布了新的文献求助10
7秒前
7秒前
lab完成签到 ,获得积分0
7秒前
小蘑菇应助今今采纳,获得10
8秒前
CodeCraft应助秋之月采纳,获得10
8秒前
I1waml完成签到 ,获得积分10
8秒前
8秒前
guygun完成签到,获得积分10
8秒前
zho发布了新的文献求助10
9秒前
独特亦旋发布了新的文献求助10
9秒前
10秒前
研友_LOqqmZ完成签到,获得积分10
11秒前
11秒前
英俊的铭应助文献查找采纳,获得10
11秒前
solobang发布了新的文献求助10
11秒前
Jasper应助老迟到的书雁采纳,获得10
14秒前
orixero应助小二采纳,获得10
14秒前
15秒前
15秒前
simple完成签到,获得积分10
15秒前
caoyy发布了新的文献求助10
15秒前
赵小可可可可完成签到,获得积分10
17秒前
小萌发布了新的文献求助10
18秒前
weiv发布了新的文献求助10
18秒前
海科科发布了新的文献求助10
19秒前
陌上花完成签到,获得积分10
19秒前
我是站长才怪应助微笑襄采纳,获得10
20秒前
caoyy完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824