Multi-objective optimization and decision making for integrated energy system using STA and fuzzy TOPSIS

托普西斯 数学优化 理想溶液 加权 多目标优化 计算机科学 多准则决策分析 帕累托原理 排名(信息检索) 模糊逻辑 熵(时间箭头) 能源规划 运筹学 数学 人工智能 可再生能源 工程类 电气工程 放射科 医学 物理 量子力学 热力学
作者
Xiaojun Zhou,Tan Wan,Yan Sun,Tingwen Huang,Chunhua Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122539-122539 被引量:16
标识
DOI:10.1016/j.eswa.2023.122539
摘要

Integrated energy system (IES) plays a vital role in achieving energy revolution and the goals of carbon peak and carbon neutrality. The optimal planning of IES is of great significance for improving the overall efficiency of the system and promoting its sustainable development. Focusing on this issue, this paper proposes a planning framework integrating multi-objective optimization with fuzzy multi-criteria decision making (MCDM). In this framework, IES planning is modeled as a multi-objective optimization problem that, for the first time, simultaneously minimizes energy consumption, carbon emissions, and economic costs. Thereafter, the optimization problem is solved by a multi-objective state transition algorithm based on decomposition (MOSTA/D), which generates a Pareto set that realizes multiple conflicting objective tradeoffs. Furthermore, to comprehensively evaluate the Pareto optimal solutions, an evaluation criteria system is established from various perspectives, and a novel MCDM approach is proposed. This approach combines the analytic network process-entropy weighting technique, which takes into account the correlation between criteria as well as subjective preference and objective information, with fuzzy TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) for scientifically ranking and selecting solutions under uncertainty. The simulation results of an IES planning case study demonstrate that the optimal scheme determined by the proposed method achieves the best overall benefit for IES, with significant annual economic cost savings, primary energy savings, and carbon dioxide emission reduction rates of 2.27%, 40.36%, and 56.25%, respectively, proving the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2123121321321发布了新的文献求助10
1秒前
kiki发布了新的文献求助10
1秒前
田様应助liyh采纳,获得10
1秒前
1秒前
研友_sheryl完成签到,获得积分10
3秒前
0530完成签到,获得积分10
5秒前
乐乐发布了新的文献求助20
5秒前
6秒前
王小裔完成签到 ,获得积分10
6秒前
6秒前
ala发布了新的文献求助10
6秒前
宇哈哈发布了新的文献求助10
8秒前
yeape发布了新的文献求助10
8秒前
研友_VZG7GZ应助紫色哀伤采纳,获得10
9秒前
9秒前
liyh完成签到,获得积分20
11秒前
zzy发布了新的文献求助10
11秒前
蒋田姣完成签到,获得积分10
15秒前
liyh发布了新的文献求助10
15秒前
16秒前
17秒前
adazbq完成签到 ,获得积分10
17秒前
ding应助zzy采纳,获得10
19秒前
19秒前
科研通AI2S应助zzd12318采纳,获得10
19秒前
吃的了细糠的山猪完成签到,获得积分10
19秒前
KYT完成签到,获得积分10
21秒前
22秒前
re完成签到,获得积分10
22秒前
大大爱吃石榴完成签到,获得积分10
22秒前
盛夏光年发布了新的文献求助10
22秒前
zplease发布了新的文献求助10
24秒前
KYT发布了新的文献求助10
24秒前
wpl完成签到 ,获得积分10
25秒前
wanci应助YWY采纳,获得30
25秒前
27秒前
A1phaYi完成签到,获得积分10
28秒前
cyun998完成签到,获得积分10
28秒前
ala完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655