Multi-objective trajectory optimization of the 2-redundancy planar feeding manipulator based on pseudo-attractor and radial basis function neural network

径向基函数 弹道 人工神经网络 计算机科学 控制理论(社会学) 吸引子 运动学 冗余(工程) 插值(计算机图形学) 数学优化 径向基函数网络 数学 人工智能 控制(管理) 天文 数学分析 物理 操作系统 运动(物理) 经典力学
作者
Shenquan Huang,Shunqing Zhou,Luchuan Yu,Jiajia Wang
出处
期刊:Mechanics Based Design of Structures and Machines [Taylor & Francis]
卷期号:52 (8): 5019-5039 被引量:3
标识
DOI:10.1080/15397734.2023.2245872
摘要

AbstractThe establishment and solution of the inverse kinematic model is the key to improve the efficiency of trajectory optimization. To improve the trajectory smoothness and reduce energy consumption of multi-degree-of-freedom (MDOF) robots, this article presents the time-, jitter-, and energy-optimal trajectory optimization method based on pseudo-attractor and radial basis function neural network. Based on the geometric method, the forward kinematic model of MDOF robots is firstly established. The diversity of inverse kinematic solutions is reduced by determining redundant joints. Combined with the attractor theory, the time-adaptive allocation strategy can automatically endow time information with path points. On this basis, the 7-time polynomial interpolation method is used to fit discrete trajectory points and generate the initial trajectory without singularity points. Affected by the pseudo-attractor, radial basis function neural network is transformed into the improved radial basis function neural network (I-RBFNN) to optimize the initial trajectory. The 2-redundancy planar feeding manipulator (2-RPFM) is introduced to verify the effectiveness of the proposed method. Experiment and simulation results show that the proposed method is available in generating high-performance trajectories, which is beneficial to improve the production efficiency of the auto-body-out-panel stamping line.Keywords: Inverse kinematicstrajectory optimization7-time polynomial interpolation methodpseudo-attractorsI-RBFNN2-RPFM Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Innovation Ability Improvement Project of Science and Technology Small and Medium Enterprises in Shandong Province under Grant number 2022TSGC2557; Research Project of Education Department of Zhejiang Province under Grant number Y202248907; Basic Scientific Research Project of Wenzhou City under Grant number G20220004; and Graduate Scientific Research Foundation of Wenzhou University under Grant number 3162023003057.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助壮观的擎采纳,获得10
刚刚
CodeCraft应助清钰采纳,获得10
1秒前
酷波er应助清钰采纳,获得10
1秒前
今后应助清钰采纳,获得10
1秒前
华仔应助清钰采纳,获得10
1秒前
Lucas应助清钰采纳,获得10
1秒前
贫穷的塔姆完成签到,获得积分10
1秒前
Dada应助Wilbert采纳,获得30
2秒前
HCB1发布了新的文献求助10
2秒前
逍遥自在完成签到,获得积分10
3秒前
4秒前
SYLH应助wendinfgmei采纳,获得10
4秒前
ww发布了新的文献求助10
4秒前
背后梦安发布了新的文献求助10
5秒前
6秒前
6秒前
小二郎应助哈哈采纳,获得10
6秒前
7秒前
韬奋!完成签到,获得积分10
7秒前
mayounaizi14发布了新的文献求助10
8秒前
8秒前
Gg完成签到,获得积分10
8秒前
压力小子关注了科研通微信公众号
8秒前
酷炫莹发布了新的文献求助10
9秒前
大个应助平淡的棉花糖采纳,获得10
9秒前
10秒前
10秒前
胖虎完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
所所应助Lea_at_采纳,获得10
12秒前
林一发布了新的文献求助10
13秒前
小蘑菇应助匡佐英采纳,获得10
13秒前
胖橘梨花逻辑猫完成签到 ,获得积分10
13秒前
尤珠珠完成签到,获得积分10
14秒前
天天快乐应助han采纳,获得10
14秒前
15秒前
Piyush321发布了新的文献求助30
15秒前
充电宝应助蘑菇采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771