清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-objective trajectory optimization of the 2-redundancy planar feeding manipulator based on pseudo-attractor and radial basis function neural network

径向基函数 弹道 人工神经网络 计算机科学 控制理论(社会学) 吸引子 运动学 冗余(工程) 插值(计算机图形学) 数学优化 径向基函数网络 数学 人工智能 运动(物理) 数学分析 物理 控制(管理) 经典力学 天文 操作系统
作者
Shenquan Huang,Shunqing Zhou,Luchuan Yu,Jiajia Wang
出处
期刊:Mechanics Based Design of Structures and Machines [Informa]
卷期号:52 (8): 5019-5039 被引量:3
标识
DOI:10.1080/15397734.2023.2245872
摘要

AbstractThe establishment and solution of the inverse kinematic model is the key to improve the efficiency of trajectory optimization. To improve the trajectory smoothness and reduce energy consumption of multi-degree-of-freedom (MDOF) robots, this article presents the time-, jitter-, and energy-optimal trajectory optimization method based on pseudo-attractor and radial basis function neural network. Based on the geometric method, the forward kinematic model of MDOF robots is firstly established. The diversity of inverse kinematic solutions is reduced by determining redundant joints. Combined with the attractor theory, the time-adaptive allocation strategy can automatically endow time information with path points. On this basis, the 7-time polynomial interpolation method is used to fit discrete trajectory points and generate the initial trajectory without singularity points. Affected by the pseudo-attractor, radial basis function neural network is transformed into the improved radial basis function neural network (I-RBFNN) to optimize the initial trajectory. The 2-redundancy planar feeding manipulator (2-RPFM) is introduced to verify the effectiveness of the proposed method. Experiment and simulation results show that the proposed method is available in generating high-performance trajectories, which is beneficial to improve the production efficiency of the auto-body-out-panel stamping line.Keywords: Inverse kinematicstrajectory optimization7-time polynomial interpolation methodpseudo-attractorsI-RBFNN2-RPFM Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Innovation Ability Improvement Project of Science and Technology Small and Medium Enterprises in Shandong Province under Grant number 2022TSGC2557; Research Project of Education Department of Zhejiang Province under Grant number Y202248907; Basic Scientific Research Project of Wenzhou City under Grant number G20220004; and Graduate Scientific Research Foundation of Wenzhou University under Grant number 3162023003057.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助20
19秒前
Criminology34应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
123完成签到,获得积分20
41秒前
灿烂而孤独的八戒完成签到 ,获得积分10
1分钟前
大脸猫4811发布了新的文献求助10
1分钟前
胡国伦完成签到 ,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
紫熊完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
heisa完成签到,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
凡舍完成签到 ,获得积分10
4分钟前
大医仁心完成签到 ,获得积分10
5分钟前
碗碗豆喵完成签到 ,获得积分10
6分钟前
Mason完成签到,获得积分10
6分钟前
辣小扬完成签到 ,获得积分10
6分钟前
白天亮完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
6分钟前
attention完成签到,获得积分10
6分钟前
Jasper应助lesliechan采纳,获得10
7分钟前
两个榴莲完成签到,获得积分0
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651129
求助须知:如何正确求助?哪些是违规求助? 4783387
关于积分的说明 15053149
捐赠科研通 4809854
什么是DOI,文献DOI怎么找? 2572694
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687