已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-objective trajectory optimization of the 2-redundancy planar feeding manipulator based on pseudo-attractor and radial basis function neural network

径向基函数 弹道 人工神经网络 计算机科学 控制理论(社会学) 吸引子 运动学 冗余(工程) 插值(计算机图形学) 数学优化 径向基函数网络 数学 人工智能 运动(物理) 数学分析 物理 控制(管理) 经典力学 天文 操作系统
作者
Shenquan Huang,Shunqing Zhou,Luchuan Yu,Jiajia Wang
出处
期刊:Mechanics Based Design of Structures and Machines [Informa]
卷期号:52 (8): 5019-5039 被引量:3
标识
DOI:10.1080/15397734.2023.2245872
摘要

AbstractThe establishment and solution of the inverse kinematic model is the key to improve the efficiency of trajectory optimization. To improve the trajectory smoothness and reduce energy consumption of multi-degree-of-freedom (MDOF) robots, this article presents the time-, jitter-, and energy-optimal trajectory optimization method based on pseudo-attractor and radial basis function neural network. Based on the geometric method, the forward kinematic model of MDOF robots is firstly established. The diversity of inverse kinematic solutions is reduced by determining redundant joints. Combined with the attractor theory, the time-adaptive allocation strategy can automatically endow time information with path points. On this basis, the 7-time polynomial interpolation method is used to fit discrete trajectory points and generate the initial trajectory without singularity points. Affected by the pseudo-attractor, radial basis function neural network is transformed into the improved radial basis function neural network (I-RBFNN) to optimize the initial trajectory. The 2-redundancy planar feeding manipulator (2-RPFM) is introduced to verify the effectiveness of the proposed method. Experiment and simulation results show that the proposed method is available in generating high-performance trajectories, which is beneficial to improve the production efficiency of the auto-body-out-panel stamping line.Keywords: Inverse kinematicstrajectory optimization7-time polynomial interpolation methodpseudo-attractorsI-RBFNN2-RPFM Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Innovation Ability Improvement Project of Science and Technology Small and Medium Enterprises in Shandong Province under Grant number 2022TSGC2557; Research Project of Education Department of Zhejiang Province under Grant number Y202248907; Basic Scientific Research Project of Wenzhou City under Grant number G20220004; and Graduate Scientific Research Foundation of Wenzhou University under Grant number 3162023003057.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助阿狸采纳,获得10
1秒前
jiangmi完成签到,获得积分10
1秒前
Z100关注了科研通微信公众号
4秒前
Omni发布了新的文献求助10
7秒前
8秒前
在水一方应助TN采纳,获得10
8秒前
leesc94完成签到 ,获得积分10
9秒前
10秒前
hy完成签到 ,获得积分10
10秒前
青雉流云完成签到,获得积分10
11秒前
Li发布了新的文献求助10
14秒前
科研通AI6应助Tulipe采纳,获得10
16秒前
17秒前
永远完成签到,获得积分10
21秒前
阿狸发布了新的文献求助10
22秒前
Akim应助开放的千青采纳,获得10
23秒前
24秒前
科研通AI6应助火星上仰采纳,获得10
24秒前
26秒前
26秒前
28秒前
咕哒猫应助佛光辉采纳,获得10
30秒前
lutuantuan完成签到,获得积分10
30秒前
yznfly应助ljq采纳,获得200
32秒前
32秒前
阿狸完成签到,获得积分10
33秒前
Ykaor完成签到 ,获得积分10
33秒前
35秒前
皮皮完成签到 ,获得积分10
35秒前
ljq完成签到,获得积分10
36秒前
Rye发布了新的文献求助10
41秒前
梦梦完成签到,获得积分10
43秒前
舒晓芸完成签到,获得积分20
44秒前
44秒前
45秒前
七七完成签到 ,获得积分10
47秒前
解你所忧完成签到 ,获得积分10
47秒前
冷酷哈密瓜完成签到,获得积分10
49秒前
51秒前
欧尼酱完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910