亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective trajectory optimization of the 2-redundancy planar feeding manipulator based on pseudo-attractor and radial basis function neural network

径向基函数 弹道 人工神经网络 计算机科学 控制理论(社会学) 吸引子 运动学 冗余(工程) 插值(计算机图形学) 数学优化 径向基函数网络 数学 人工智能 运动(物理) 数学分析 物理 控制(管理) 经典力学 天文 操作系统
作者
Shenquan Huang,Shunqing Zhou,Luchuan Yu,Jiajia Wang
出处
期刊:Mechanics Based Design of Structures and Machines [Informa]
卷期号:52 (8): 5019-5039 被引量:3
标识
DOI:10.1080/15397734.2023.2245872
摘要

AbstractThe establishment and solution of the inverse kinematic model is the key to improve the efficiency of trajectory optimization. To improve the trajectory smoothness and reduce energy consumption of multi-degree-of-freedom (MDOF) robots, this article presents the time-, jitter-, and energy-optimal trajectory optimization method based on pseudo-attractor and radial basis function neural network. Based on the geometric method, the forward kinematic model of MDOF robots is firstly established. The diversity of inverse kinematic solutions is reduced by determining redundant joints. Combined with the attractor theory, the time-adaptive allocation strategy can automatically endow time information with path points. On this basis, the 7-time polynomial interpolation method is used to fit discrete trajectory points and generate the initial trajectory without singularity points. Affected by the pseudo-attractor, radial basis function neural network is transformed into the improved radial basis function neural network (I-RBFNN) to optimize the initial trajectory. The 2-redundancy planar feeding manipulator (2-RPFM) is introduced to verify the effectiveness of the proposed method. Experiment and simulation results show that the proposed method is available in generating high-performance trajectories, which is beneficial to improve the production efficiency of the auto-body-out-panel stamping line.Keywords: Inverse kinematicstrajectory optimization7-time polynomial interpolation methodpseudo-attractorsI-RBFNN2-RPFM Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Innovation Ability Improvement Project of Science and Technology Small and Medium Enterprises in Shandong Province under Grant number 2022TSGC2557; Research Project of Education Department of Zhejiang Province under Grant number Y202248907; Basic Scientific Research Project of Wenzhou City under Grant number G20220004; and Graduate Scientific Research Foundation of Wenzhou University under Grant number 3162023003057.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
SciGPT应助kakamua采纳,获得10
24秒前
39秒前
科研通AI2S应助白华苍松采纳,获得10
40秒前
58秒前
1分钟前
kyn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
龙06应助幽默棒球采纳,获得10
1分钟前
kyn完成签到 ,获得积分10
1分钟前
溜溜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
kakamua发布了新的文献求助10
1分钟前
kakamua完成签到,获得积分10
1分钟前
2分钟前
龙06应助幽默棒球采纳,获得10
2分钟前
2分钟前
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
龙06发布了新的文献求助30
2分钟前
MchemG完成签到,获得积分0
2分钟前
科研通AI6应助tina采纳,获得100
2分钟前
靓丽的幻天完成签到 ,获得积分10
2分钟前
靓丽的幻天关注了科研通微信公众号
2分钟前
3分钟前
上官若男应助kyn采纳,获得10
3分钟前
3分钟前
3分钟前
21145077发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509647
求助须知:如何正确求助?哪些是违规求助? 4604470
关于积分的说明 14489806
捐赠科研通 4539289
什么是DOI,文献DOI怎么找? 2487442
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442066