Long-Term Short-Term Memory Networks of Retinal OCT Images Predict the Incidence Trend of Alzheimer's Disease

计算机科学 可解释性 神经纤维层 人工智能 期限(时间) 卷积神经网络 集合(抽象数据类型) 试验装置 模式识别(心理学) 视网膜 医学 眼科 物理 量子力学 程序设计语言
作者
Junjie Li,Guohua Qin,Shuang Wu,Jiangfeng Fu,Xinyu Wang,Wenchao Guo,Weiwei Li
标识
DOI:10.1109/ainit59027.2023.10212792
摘要

Alzheimer's disease is currently a neurodegenerative disease that is clinically difficult to cure, and if it can be prevented and screened as soon as possible, it will reduce the clinical diagnosis rate and alleviate the trend of younger age. For early screening, clock drawing test, mental state scale (MMSE), Montreal cognitive screening scale (MoCA) and so on are widely used, but the scale is highly subjective and has a limited scope of application. At present, time series analysis is mostly used to establish long-term monitoring of patients in order to accurately predict the development trend of AD. The retina is part of the central nervous system that provides information about the state of the brain and its changes, and the thickness of the retinal nerve fiber layer (RNFL) can be observed using OCT technology (optical coherence tomography). In this paper, the Kaggle open-source OCT dataset is used to establish a long short-term memory (LSTM) time series model. In the training model, the data is divided into a training set and a test set, and by continuously training the model, it has been proved that the data features of the training set can be learned and verified by the test set. In this paper, RelayNet convolutional blocks (encoders) are used to segment images after convolutional pooling. The ReLayNet algorithm uses the gradient-weighted class activation mapping method to generate heat maps to highlight the lesion area, increase the model interpretability, segment the retinal layered structure in the OCT image, and the inner and outer retinal Dice coefficients reach 0.9612 and 0.9501, which have good image segmentation effects, respectively. The RNFL of healthy controls is significantly thicker than that of AD patients, so the RNFL thickness of patients with mild cognitive impairment (MCI) can be tracked for a long time and the incidence trend can be predicted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助广州小肥羊采纳,获得30
1秒前
1秒前
六氟合铂酸氙应助crazy采纳,获得10
1秒前
cannon8发布了新的文献求助50
1秒前
小张完成签到,获得积分10
1秒前
大脸怪发布了新的文献求助30
2秒前
2秒前
2秒前
3秒前
3秒前
笛子完成签到,获得积分10
3秒前
共享精神应助伶俐一曲采纳,获得10
3秒前
Sunny发布了新的文献求助10
3秒前
知行合一完成签到 ,获得积分10
4秒前
4秒前
4秒前
在水一方应助冰释之川采纳,获得10
4秒前
恩希玛发布了新的文献求助10
5秒前
5秒前
忧虑的羊发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
MXL发布了新的文献求助10
7秒前
7秒前
科研通AI5应助友好的未来采纳,获得30
7秒前
毛毛虫PhD发布了新的文献求助10
8秒前
小马甲应助温婉的幻梦采纳,获得10
8秒前
科研通AI5应助yw采纳,获得10
8秒前
yunli完成签到 ,获得积分20
9秒前
9秒前
加菲丰丰应助Rui采纳,获得10
9秒前
SYLH应助baomingqiu采纳,获得10
9秒前
9秒前
9秒前
思源应助落日晚归舟采纳,获得10
10秒前
Hollen完成签到 ,获得积分10
10秒前
Jasper应助洋芋采纳,获得10
11秒前
林深完成签到,获得积分10
12秒前
guan完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512922
求助须知:如何正确求助?哪些是违规求助? 3095320
关于积分的说明 9227480
捐赠科研通 2790349
什么是DOI,文献DOI怎么找? 1531168
邀请新用户注册赠送积分活动 711316
科研通“疑难数据库(出版商)”最低求助积分说明 706735