Enhancing Postmarketing Surveillance of Medical Products With Large Language Models

上市后监督 医疗保健 患者安全 医学 不利影响 政治学 药理学 法学
作者
Michael E. Matheny,Jie Yang,Joshua C. Smith,Colin G. Walsh,Mohammed Ali Al-Garadi,Sharon E. Davis,Keith Marsolo,Daniel Fabbri,Ruth Reeves,Kevin B. Johnson,Gerald J. Dal Pan,Robert Ball,Rishi Desai
出处
期刊:JAMA network open [American Medical Association]
卷期号:7 (8): e2428276-e2428276
标识
DOI:10.1001/jamanetworkopen.2024.28276
摘要

Importance The Sentinel System is a key component of the US Food and Drug Administration (FDA) postmarketing safety surveillance commitment and uses clinical health care data to conduct analyses to inform drug labeling and safety communications, FDA advisory committee meetings, and other regulatory decisions. However, observational data are frequently deemed insufficient for reliable evaluation of safety concerns owing to limitations in underlying data or methodology. Advances in large language models (LLMs) provide new opportunities to address some of these limitations. However, careful consideration is necessary for how and where LLMs can be effectively deployed for these purposes. Observations LLMs may provide new avenues to support signal-identification activities to identify novel adverse event signals from narrative text of electronic health records. These algorithms may be used to support epidemiologic investigations examining the causal relationship between exposure to a medical product and an adverse event through development of probabilistic phenotyping of health outcomes of interest and extraction of information related to important confounding factors. LLMs may perform like traditional natural language processing tools by annotating text with controlled vocabularies with additional tailored training activities. LLMs offer opportunities for enhancing information extraction from adverse event reports, medical literature, and other biomedical knowledge sources. There are several challenges that must be considered when leveraging LLMs for postmarket surveillance. Prompt engineering is needed to ensure that LLM-extracted associations are accurate and specific. LLMs require extensive infrastructure to use, which many health care systems lack, and this can impact diversity, equity, and inclusion, and result in obscuring significant adverse event patterns in some populations. LLMs are known to generate nonfactual statements, which could lead to false positive signals and downstream evaluation activities by the FDA and other entities, incurring substantial cost. Conclusions and Relevance LLMs represent a novel paradigm that may facilitate generation of information to support medical product postmarket surveillance activities that have not been possible. However, additional work is required to ensure LLMs can be used in a fair and equitable manner, minimize false positive findings, and support the necessary rigor of signal detection needed for regulatory activities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿芙乐尔完成签到,获得积分10
2秒前
邹大亮发布了新的文献求助10
2秒前
西西弗发布了新的文献求助10
2秒前
2秒前
Akim应助沉静的清涟采纳,获得10
3秒前
4秒前
priss111应助lhh7771117采纳,获得30
5秒前
酱豆豆完成签到 ,获得积分10
5秒前
FashionBoy应助晨曦采纳,获得10
5秒前
在水一方应助林玉虎采纳,获得10
6秒前
ding应助精炼猫薄荷采纳,获得10
8秒前
8秒前
10秒前
xixi完成签到,获得积分10
10秒前
一方驳回了Owen应助
11秒前
CipherSage应助Liao采纳,获得10
11秒前
南宫炽滔完成签到 ,获得积分10
12秒前
Watson发布了新的文献求助10
14秒前
14秒前
15秒前
zlj关注了科研通微信公众号
15秒前
嘉心糖给余烬22的求助进行了留言
15秒前
yuni发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
20秒前
mouxq发布了新的文献求助10
21秒前
宇文青寒发布了新的文献求助10
22秒前
23秒前
zlj发布了新的文献求助10
24秒前
ganchao1776发布了新的文献求助20
25秒前
医生科学家完成签到 ,获得积分10
25秒前
EVAN完成签到,获得积分10
25秒前
完美世界应助自行者采纳,获得10
26秒前
26秒前
脑洞疼应助HonglinGao采纳,获得10
26秒前
草拟大坝发布了新的文献求助10
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168334
求助须知:如何正确求助?哪些是违规求助? 2819660
关于积分的说明 7927409
捐赠科研通 2479535
什么是DOI,文献DOI怎么找? 1320994
科研通“疑难数据库(出版商)”最低求助积分说明 632925
版权声明 602460