化学
电泳剂
烷基
催化作用
有机化学
酮
药物化学
作者
Hanyu Xia,Xiao Jiang,Di Lin,Shaoping Zhang,Zhiming Yu,Xianqing Wu,Jingping Qü,Yifeng Chen
摘要
The Barbier reaction is a reductive-type addition of an aldehyde or ketone with an organic electrophile in the presence of a terminal metal reductant, providing a straightforward and efficient method for carbon-carbon bond formation. This reaction possesses the advantage of circumventing the preparation of moisture- and air-sensitive organometallic reagents. However, the catalytic Barbier reaction of ketones to construct tetrasubstituted stereogenic centers is largely underdeveloped, despite its great potential for accessing synthetically challenging chiral tertiary alcohol. Particularly, the leveraging of unactivated alkyl electrophiles as coupling components is still rarely exploited. Herein, we disclose a photoredox-assisted cobalt-catalyzed asymmetric alkylative Barbier-type addition reaction of ketones to address the aforementioned challenges, thereby allowing for the construction of highly congested tetrasubstituted carbon centers. The alkyl addition fragments could be either readily accessible unactivated alkyl halides or redox-active esters generated through a decarboxylative pathway. Both types of alkyl electrophiles include primary, secondary, and tertiary ones, thus affording diverse enantioenriched tertiary alcohols with a broad substrate scope. This enantioselective protocol is applied for the expedient synthesis of core structure of
科研通智能强力驱动
Strongly Powered by AbleSci AI