Adaptive deep convolutional neural networks with wide first-layer kernel bearing fault diagnosis algorithm based on adaptive batch normalization

规范化(社会学) 计算机科学 卷积神经网络 算法 核(代数) 人工智能 模式识别(心理学) 数学 人类学 组合数学 社会学
作者
Jiacheng Fang,Yifei Yang
标识
DOI:10.1117/12.2653452
摘要

The adaptive deep convolutional neural networks (ADCNN) with wide first-layer kernel algorithm model for processing one-dimensional bearing vibration signals has low diagnostic accuracy for data noise and variable load. Therefore, the adaptive deep convolutional neural networks with wide first-layer kernel rolling bearing data diagnosis algorithm based on adaptive batch normalization (ADABN) adaptation is proposed. The algorithm first builds 64 × 1 the first wide convolution kernel layer, and then construct all 3 × 1, and finally build the full connection layer and SoftMax layer. At this time, the mean and variance of the target domain samples are used in each BN layer of the network to replace the mean and variance of the source domain samples used in the original BN layer, so as to achieve the purpose of data domain adaptation. The research on the adaptive deep convolutional neural networks with wide first-layer kernel fault diagnosis algorithm based on adaptive batch normalization is carried out on the ship propeller bearing data set provided by CSIC. The results show that the fault diagnosis accuracy reaches more than 99% in the case of variable data domain, which is better than other algorithms, and improves the adaptive ability of adaptive deep convolutional neural networks with wide first-layer kernel algorithm in the data domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
li发布了新的文献求助10
1秒前
pp发布了新的文献求助20
2秒前
Freesia完成签到,获得积分10
2秒前
顺顺安完成签到,获得积分10
2秒前
科研通AI5应助朱曼曼采纳,获得10
2秒前
科研通AI5应助HiK采纳,获得10
3秒前
FashionBoy应助多金采纳,获得10
3秒前
3秒前
娃haha发布了新的文献求助10
4秒前
4秒前
5秒前
zdy完成签到 ,获得积分20
5秒前
5秒前
5秒前
6秒前
7秒前
8秒前
顾易完成签到,获得积分10
8秒前
9秒前
Orange应助阿九采纳,获得10
9秒前
yufanhui应助顺利毕业采纳,获得10
9秒前
天天都肚子疼完成签到,获得积分10
9秒前
wangyup发布了新的文献求助10
9秒前
9秒前
和谐雨竹发布了新的文献求助10
9秒前
9秒前
养恩完成签到,获得积分10
10秒前
喜悦的皮卡丘完成签到,获得积分10
10秒前
11秒前
司空豁发布了新的文献求助10
11秒前
11秒前
科研通AI5应助半糖采纳,获得10
11秒前
11秒前
克劳克伊完成签到,获得积分20
12秒前
科研通AI5应助Paper采纳,获得10
12秒前
星辰大海应助ncjdoi采纳,获得10
12秒前
chaonm发布了新的文献求助10
12秒前
一只虎子完成签到,获得积分10
13秒前
瘦瘦嫣然应助快乐的冰巧采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
Pragmatics as a theory of linguistics adaptation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695812
求助须知:如何正确求助?哪些是违规求助? 3247559
关于积分的说明 9855067
捐赠科研通 2959119
什么是DOI,文献DOI怎么找? 1622521
邀请新用户注册赠送积分活动 768140
科研通“疑难数据库(出版商)”最低求助积分说明 741370