双功能
原位
劈理(地质)
DNA
分子生物学
信号(编程语言)
哑铃
结扎
生物物理学
化学
生物
计算机科学
生物化学
古生物学
催化作用
程序设计语言
断裂(地质)
有机化学
生理学
作者
Shasha Zeng,Jinyang Chen,Qingli Chai,Ting Zhu,Guobin Mao
标识
DOI:10.1016/j.saa.2022.122295
摘要
Flap endonuclease 1 (FEN1) is overexpressed in various types of human tumor cells and has been recognized as a promising biomarker for cancer diagnosis in recent years. In this work, a label-free fluorescent nanosensor for FEN1 detection was developed based on cleavage-induced ligation of bifunctional dumbbell DNA and in-situ signal readout by copper nanoparticles (CuNPs). The dumbbell DNA was rationally designed with a FEN1 cleavable 5′ flap for target recognition and AT-riched stem-loop template for CuNPs formation. In the presence of FEN1, 5′ overhanging DNA flap of dumbbell DNA was effectively removed to form a linkable nick site. After the ligation by T4 DNA ligase, the dumbbell DNA changed to exonuclease-resisted closed structure which enabled in-situ generation of fluorescent CuNPs that served as signal source for target quantification. The low background attributed to synergic digestion by exonucleases facilitated the highly sensitive detection of FEN1 with limit of detection of 0.007 U/mL. Additionally, the sensor was extended to the assay of FEN1 inhibitor (aurintricarboxylic acid) with reasonable results. Last but not least, the normal cells and tumor cells were distinguished unambiguously by this sensor according to the detected concentration difference of cellular FEN1, which indicates the robustness and practicability of this nanosensor.
科研通智能强力驱动
Strongly Powered by AbleSci AI