亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Patent Quality Based on Machine Learning Approach

层次分析法 质量(理念) 知识产权 机器学习 激励 投资(军事) 竞赛(生物学) 人工智能 多层感知器 计算机科学 专利分析 过程(计算) 工程类 人工神经网络 运筹学 经济 数据科学 认识论 法学 微观经济学 哲学 操作系统 政治学 政治 生物 生态学
作者
Zülfiye Erdoğan,Serkan Altuntaş,Türkay Dereli
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 3144-3157 被引量:9
标识
DOI:10.1109/tem.2022.3207376
摘要

The investment budget allocated by companies in R&D activities has increased due to increased competition in the market. Applications for industrial property rights by countries, investors, companies, and universities to protect inventions obtained as an outcome of investments have also increased. The selection of the patent to be invested becomes more difficult with the increasing number of applications. Therefore, predicting patent quality is quite significant for companies to be successful in the future. The level to which a patent meets the expectations of decision makers is referred to as patent quality. Patent indices represent decision makers' expectations. In this study, an approach is proposed to predict patent quality in practice. The proposed approach uses supervised learning algorithms and analytic hierarchy process (AHP) method. The proposed approach is applied to patents related to personal digital assistant technologies. The performances of individual and ensemble machine learning methods have been also analyzed to establish the prediction model. In addition, 75% split ratio and the five-fold cross-validation methods have been used to verify the prediction model. The multilayer perceptron algorithm has 76% accuracy value. The proposed prediction model is essential in directing R&D studies to the right technology areas and transferring the incentives to patent applications with a high quality rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
田様应助欢呼的忘幽采纳,获得10
8秒前
星愿发布了新的文献求助10
10秒前
小泉发布了新的文献求助10
10秒前
dxwy完成签到,获得积分10
18秒前
wbs13521完成签到,获得积分10
19秒前
小鱼爱吃肉应助星愿采纳,获得10
20秒前
22秒前
lemonkim完成签到,获得积分10
24秒前
充电宝应助LuoYixiang采纳,获得10
24秒前
26秒前
bai123发布了新的文献求助10
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
ding应助科研通管家采纳,获得10
28秒前
Gail完成签到 ,获得积分10
28秒前
29秒前
找文献完成签到 ,获得积分10
30秒前
岁岁完成签到 ,获得积分10
30秒前
30秒前
TheMonster完成签到,获得积分10
32秒前
35秒前
111发布了新的文献求助10
38秒前
星愿完成签到,获得积分20
39秒前
Min完成签到 ,获得积分10
44秒前
星辰大海应助强壮自行车采纳,获得10
45秒前
无限的水壶完成签到 ,获得积分10
46秒前
安静的棉花糖完成签到 ,获得积分10
47秒前
zzzzzttt完成签到,获得积分10
49秒前
飘逸翠柏完成签到 ,获得积分10
50秒前
51秒前
54秒前
56秒前
忧郁依霜完成签到,获得积分20
58秒前
1分钟前
梁朝伟发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335213
求助须知:如何正确求助?哪些是违规求助? 2964446
关于积分的说明 8613755
捐赠科研通 2643316
什么是DOI,文献DOI怎么找? 1447277
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658953