Development of machine learning-based models for vault prediction in implantable collamer lens surgery according to implant orientation

金库(建筑) 方向(向量空间) 计算机科学 人工智能 医学 工程类 结构工程 数学 几何学
作者
Timoteo González-Cruces,Francisco Javier Aguilar-Salazar,José F. Tort,Álvaro Sánchez-Ventosa,Alberto Villarrubia,José Lamarca Mateu,Rafael I. Barraquer,Sergio Pardina,David Cerdán Palacios,Antonio Cano-Ortiz
出处
期刊:Journal of Cataract and Refractive Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/j.jcrs.0000000000001623
摘要

The main objective was to develop a prediction model based on machine learning to calculate the postoperative vault as well as the ideal implantable collamer lens (ICL) size, considering for the first time the implantation orientation in a Caucasian population. Arruzafa Ophthalmological Hospital (Cordoba, Spain) and Barraquer Ophthalmology Center (Barcelona, Spain). Multicenter, randomized, retrospective study. Anterior segment biometric data from 235 eyes of patients who underwent ICL lens implantation surgery were collected using the anterior segment optical coherence tomography (AS-OCT) CASIA II, to train and validate five types of multiple regression models based on advanced machine learning techniques. To perform an external validation a dataset of 45 observations was used. The Pearson correlation coefficient between observed and predicted values was similar in the five models in the external validation, with least absolute shrinkage and selection operator (LASSO) regression being the highest (r = 0.62, p < 0.001), followed by random forest regression model (r = 0.60, p < 0.001) and backward stepwise regression (r = 0.58, ρ < 0.001). In addition, the predictions generated by the different models showed closer agreement with the actual vault compared with the Nakamura formulas. Using the new methods, about 70% of the observations had a prediction error below 150 µm. Advanced forms of regressions models based on machine learning allow satisfactory calculation of the ideal lens size, offering greater precision to surgeons customizing surgery according to implant orientation.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助carrieschen采纳,获得10
3秒前
科研大佬修炼手册完成签到,获得积分10
3秒前
所所应助虚拟的凝海采纳,获得10
5秒前
紫靛橙完成签到,获得积分10
5秒前
酷波er应助超级诗桃采纳,获得10
5秒前
哦喜之郎完成签到,获得积分20
6秒前
嗯哼应助小姜采纳,获得20
6秒前
汉堡包应助科研靓仔采纳,获得10
7秒前
隐形曼青应助小木采纳,获得10
7秒前
林子夕完成签到,获得积分10
8秒前
9秒前
虚幻的凤完成签到,获得积分10
12秒前
tinghua完成签到,获得积分10
13秒前
rocinante发布了新的文献求助10
13秒前
14秒前
15秒前
17秒前
17秒前
CDH完成签到,获得积分10
17秒前
S2639发布了新的文献求助10
18秒前
18秒前
19秒前
超级诗桃发布了新的文献求助10
19秒前
林子夕发布了新的文献求助10
20秒前
21秒前
小木发布了新的文献求助10
22秒前
24秒前
善良耳机发布了新的文献求助10
24秒前
研友_VZG7GZ应助自由小蜜蜂采纳,获得20
24秒前
满意曼文发布了新的文献求助10
26秒前
orixero应助平淡的访风采纳,获得10
26秒前
rocinante完成签到,获得积分10
28秒前
28秒前
时尚水壶发布了新的文献求助10
29秒前
31秒前
31秒前
Akim应助满意曼文采纳,获得10
31秒前
蜜桃吐司完成签到 ,获得积分10
32秒前
32秒前
xu完成签到 ,获得积分10
32秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412724
求助须知:如何正确求助?哪些是违规求助? 3015318
关于积分的说明 8869744
捐赠科研通 2703064
什么是DOI,文献DOI怎么找? 1482010
科研通“疑难数据库(出版商)”最低求助积分说明 685108
邀请新用户注册赠送积分活动 679781