An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features

计算机科学 脑电图 脑-机接口 人工智能 模式识别(心理学) 运动表象 卷积神经网络 特征提取 支持向量机 人工神经网络 冗余(工程) 语音识别 心理学 操作系统 精神科
作者
Shidong Lian,Zheng Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108727-108727 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108727
摘要

Electroencephalograph (EEG) brain-computer interfaces (BCI) have potential to provide new paradigms for controlling computers and devices. The accuracy of brain pattern classification in EEG BCI is directly affected by the quality of features extracted from EEG signals. Currently, feature extraction heavily relies on prior knowledge to engineer features (for example from specific frequency bands); therefore, better extraction of EEG features is an important research direction. In this work, we propose an end-to-end deep neural network that automatically finds and combines features for motor imagery (MI) based EEG BCI with 4 or more imagery classes (multi-task). First, spectral domain features of EEG signals are learned by compact convolutional neural network (CCNN) layers. Then, gated recurrent unit (GRU) neural network layers automatically learn temporal patterns. Lastly, an attention mechanism dynamically combines (across EEG channels) the extracted spectral-temporal features, reducing redundancy. We test our method using BCI Competition IV-2a and a data set we collected. The average classification accuracy on 4-class BCI Competition IV-2a was 85.1 % ± 6.19 %, comparable to recent work in the field and showing low variability among participants; average classification accuracy on our 6-class data was 64.4 % ± 8.35 %. Our dynamic fusion of spectral-temporal features is end-to-end and has relatively few network parameters, and the experimental results show its effectiveness and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amanda完成签到 ,获得积分10
刚刚
1秒前
霜降应助逸风望采纳,获得10
1秒前
max发布了新的文献求助10
3秒前
3秒前
Jasper应助还单身的尔琴采纳,获得10
3秒前
林夏应助pray采纳,获得10
4秒前
4秒前
陈秋禹完成签到,获得积分10
4秒前
4秒前
小冯发布了新的文献求助10
4秒前
4秒前
5秒前
专注的问寒应助LIU采纳,获得50
5秒前
5秒前
文艺过客发布了新的文献求助10
6秒前
FashionBoy应助晚风采纳,获得10
7秒前
7秒前
7秒前
Yaphet完成签到,获得积分10
7秒前
HJJHJH发布了新的文献求助10
8秒前
希望天下0贩的0应助zzz采纳,获得10
8秒前
鱼饼发布了新的文献求助10
8秒前
77完成签到 ,获得积分10
8秒前
Jasper应助Evan采纳,获得10
10秒前
10秒前
lilianan完成签到,获得积分10
10秒前
创新发布了新的文献求助10
10秒前
10秒前
10秒前
丘比特应助fuchao采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
小蘑菇应助快乐的板凳采纳,获得10
11秒前
阿达完成签到 ,获得积分10
11秒前
11秒前
daidai发布了新的文献求助10
11秒前
Tbo发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548