An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features

计算机科学 脑电图 脑-机接口 人工智能 模式识别(心理学) 运动表象 卷积神经网络 特征提取 支持向量机 人工神经网络 冗余(工程) 语音识别 心理学 操作系统 精神科
作者
Shidong Lian,Zheng Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108727-108727 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108727
摘要

Electroencephalograph (EEG) brain-computer interfaces (BCI) have potential to provide new paradigms for controlling computers and devices. The accuracy of brain pattern classification in EEG BCI is directly affected by the quality of features extracted from EEG signals. Currently, feature extraction heavily relies on prior knowledge to engineer features (for example from specific frequency bands); therefore, better extraction of EEG features is an important research direction. In this work, we propose an end-to-end deep neural network that automatically finds and combines features for motor imagery (MI) based EEG BCI with 4 or more imagery classes (multi-task). First, spectral domain features of EEG signals are learned by compact convolutional neural network (CCNN) layers. Then, gated recurrent unit (GRU) neural network layers automatically learn temporal patterns. Lastly, an attention mechanism dynamically combines (across EEG channels) the extracted spectral-temporal features, reducing redundancy. We test our method using BCI Competition IV-2a and a data set we collected. The average classification accuracy on 4-class BCI Competition IV-2a was 85.1 % ± 6.19 %, comparable to recent work in the field and showing low variability among participants; average classification accuracy on our 6-class data was 64.4 % ± 8.35 %. Our dynamic fusion of spectral-temporal features is end-to-end and has relatively few network parameters, and the experimental results show its effectiveness and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助虚心的大树采纳,获得10
刚刚
1秒前
GGbond发布了新的文献求助10
2秒前
GGbond发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
三岁应助土豪的行云采纳,获得10
4秒前
ydl0927发布了新的文献求助10
4秒前
4秒前
xiaoyan完成签到,获得积分10
4秒前
5秒前
liu发布了新的文献求助10
5秒前
Magic1987发布了新的文献求助10
5秒前
5秒前
6秒前
颜雅僖发布了新的文献求助10
6秒前
7秒前
吴欣欣完成签到,获得积分10
7秒前
8秒前
喵喵发布了新的文献求助10
8秒前
聆听发布了新的文献求助10
9秒前
10秒前
nancyjcfan完成签到,获得积分10
10秒前
周楷航发布了新的文献求助10
10秒前
天天快乐应助宇文宛菡采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
上官若男应助yy采纳,获得10
13秒前
星辰大海应助Magic1987采纳,获得10
13秒前
高翔发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
吴亚博应助xiaoma采纳,获得10
14秒前
思思思完成签到,获得积分20
14秒前
15秒前
小透明发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901