An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features

计算机科学 脑电图 脑-机接口 人工智能 模式识别(心理学) 运动表象 卷积神经网络 特征提取 支持向量机 人工神经网络 冗余(工程) 语音识别 心理学 操作系统 精神科
作者
Shidong Lian,Zheng Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108727-108727 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108727
摘要

Electroencephalograph (EEG) brain-computer interfaces (BCI) have potential to provide new paradigms for controlling computers and devices. The accuracy of brain pattern classification in EEG BCI is directly affected by the quality of features extracted from EEG signals. Currently, feature extraction heavily relies on prior knowledge to engineer features (for example from specific frequency bands); therefore, better extraction of EEG features is an important research direction. In this work, we propose an end-to-end deep neural network that automatically finds and combines features for motor imagery (MI) based EEG BCI with 4 or more imagery classes (multi-task). First, spectral domain features of EEG signals are learned by compact convolutional neural network (CCNN) layers. Then, gated recurrent unit (GRU) neural network layers automatically learn temporal patterns. Lastly, an attention mechanism dynamically combines (across EEG channels) the extracted spectral-temporal features, reducing redundancy. We test our method using BCI Competition IV-2a and a data set we collected. The average classification accuracy on 4-class BCI Competition IV-2a was 85.1 % ± 6.19 %, comparable to recent work in the field and showing low variability among participants; average classification accuracy on our 6-class data was 64.4 % ± 8.35 %. Our dynamic fusion of spectral-temporal features is end-to-end and has relatively few network parameters, and the experimental results show its effectiveness and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
学术Bond发布了新的文献求助10
1秒前
Su发布了新的文献求助10
1秒前
科研通AI6应助神勇的女孩采纳,获得10
1秒前
1秒前
FashionBoy应助ai采纳,获得10
2秒前
蓝幻雷完成签到,获得积分10
2秒前
唐黑黑发布了新的文献求助10
2秒前
苗条傲蕾完成签到,获得积分20
2秒前
李健的小迷弟应助kc采纳,获得10
2秒前
雨眠发布了新的文献求助10
3秒前
田様应助asdasdasd采纳,获得10
3秒前
科研通AI6应助初心采纳,获得20
3秒前
3秒前
3秒前
4秒前
无极微光应助蒸馏水采纳,获得20
4秒前
4秒前
4秒前
完美世界应助漂亮妙柏采纳,获得10
4秒前
科研通AI6应助ar采纳,获得10
5秒前
6秒前
英姑应助苗条傲蕾采纳,获得10
6秒前
hqy完成签到,获得积分20
6秒前
YaRu应助spacewing0216采纳,获得20
6秒前
6秒前
汉堡包应助婷婷采纳,获得30
7秒前
7秒前
8秒前
SunK1876完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
螺蛳粉发布了新的文献求助30
9秒前
9秒前
9秒前
水木年华发布了新的文献求助10
9秒前
小豪完成签到,获得积分10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262