计算机科学
脑电图
脑-机接口
人工智能
模式识别(心理学)
运动表象
卷积神经网络
特征提取
支持向量机
人工神经网络
冗余(工程)
语音识别
心理学
精神科
操作系统
标识
DOI:10.1016/j.compbiomed.2024.108727
摘要
Electroencephalograph (EEG) brain-computer interfaces (BCI) have potential to provide new paradigms for controlling computers and devices. The accuracy of brain pattern classification in EEG BCI is directly affected by the quality of features extracted from EEG signals. Currently, feature extraction heavily relies on prior knowledge to engineer features (for example from specific frequency bands); therefore, better extraction of EEG features is an important research direction. In this work, we propose an end-to-end deep neural network that automatically finds and combines features for motor imagery (MI) based EEG BCI with 4 or more imagery classes (multi-task). First, spectral domain features of EEG signals are learned by compact convolutional neural network (CCNN) layers. Then, gated recurrent unit (GRU) neural network layers automatically learn temporal patterns. Lastly, an attention mechanism dynamically combines (across EEG channels) the extracted spectral-temporal features, reducing redundancy. We test our method using BCI Competition IV-2a and a data set we collected. The average classification accuracy on 4-class BCI Competition IV-2a was 85.1 % ± 6.19 %, comparable to recent work in the field and showing low variability among participants; average classification accuracy on our 6-class data was 64.4 % ± 8.35 %. Our dynamic fusion of spectral-temporal features is end-to-end and has relatively few network parameters, and the experimental results show its effectiveness and potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI