异质结
分解水
光电子学
光电化学
材料科学
光电化学电池
半导体材料
半导体
纳米技术
化学
电化学
光催化
电极
物理化学
生物化学
电解质
催化作用
作者
Vidya Doiphode,Pratibha Shinde,Ashvini Punde,Shruti Shah,Dhanashri Kale,Yogesh Hase,Somnath Ladhane,Swati Rahane,Ashish Waghmare,Bharat Bade,Sachin R. Rondiya,Mohit Prasad,Shashikant P. Patole,Sandesh Jadkar
标识
DOI:10.1016/j.jpowsour.2024.234712
摘要
A promising method for producing hydrogen from solar energy and transforming it into chemical fuel is photoelectrochemical (PEC) water splitting. This ecologically friendly process can also avoid energy crises. Herein, we present the electrodeposition and chemical bath deposition methods used to create ZnO-nanorod/CdS nanoparticle (ZnO/CdS) heterostructures. The structural, optical, morphological, and PEC properties are investigated. UV–Visible spectroscopy analysis reveals the ZnO/CdS films have absorption edges in the visible and ultraviolet regions. The CdS loading directly impacts the PEC result of ZnO/CdS photoanodes. The M-S plots show a positive slope, indicating the n-type nature of ZnO and CdS. Under illumination intensity of 100 mW cm−2, the ideal photocurrent density reaches 4.90 mA/cm2 at a bias of 1.35 V versus reversible hydrogen electrode (vs. RHE) and is five times greater than the pristine ZnO nanorods. The maximum applied bias photon to the current conversion efficiency of 0.23 % at 0.26 V vs. RHE is observed in the pristine ZnO photoanodes. In contrast, the ZnO/CdS photoanode has achieved 3.02 % at 0.26 V vs. RHE, almost 13 times greater than the pristine ZnO photoanode. Finally, the hydrogen evolution process and the mechanism of charge transfer in ZnO/CdS heterostructure are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI