Correctable Landmark Discovery Via Large Models for Vision-Language Navigation

地标 计算机科学 人工智能
作者
Bingqian Lin,Yunshuang Nie,Ziming Wei,Yi Zhu,Hang Xu,Shikui Ma,Jianzhuang Liu,Xiaodan Liang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2024.3407759
摘要

Vision-Language Navigation (VLN) requires the agent to follow language instructions to reach a target position. A key factor for successful navigation is to align the landmarks implied in the instruction with diverse visual observations. However, previous VLN agents fail to perform accurate modality alignment especially in unexplored scenes, since they learn from limited navigation data and lack sufficient open-world alignment knowledge. In this work, we propose a new VLN paradigm, called CO rrectable La N dmark Di S c O very via L arge Mod E ls (CONSOLE). In CONSOLE, we cast VLN as an open-world sequential landmark discovery problem, by introducing a novel correctable landmark discovery scheme based on two large models ChatGPT and CLIP. Specifically, we use ChatGPT to provide rich open-world landmark cooccurrence commonsense, and conduct CLIP-driven landmark discovery based on these commonsense priors. To mitigate the noise in the priors due to the lack of visual constraints, we introduce a learnable cooccurrence scoring module, which corrects the importance of each cooccurrence according to actual observations for accurate landmark discovery. We further design an observation enhancement strategy for an elegant combination of our framework with different VLN agents, where we utilize the corrected landmark features to obtain enhanced observation features for action decision. Extensive experimental results on multiple popular VLN benchmarks (R2R, REVERIE, R4R, RxR) show the significant superiority of CONSOLE over strong baselines. Especially, our CONSOLE establishes the new state-of-the-art results on R2R and R4R in unseen scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
随机起的名完成签到,获得积分10
刚刚
Owen应助努力的小狗屁采纳,获得10
1秒前
1秒前
vuig完成签到 ,获得积分10
1秒前
哈哈哈的一笑完成签到,获得积分10
1秒前
1秒前
Emma完成签到,获得积分10
1秒前
2秒前
2秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
2秒前
huanger完成签到,获得积分10
2秒前
Tayzon完成签到 ,获得积分10
2秒前
我测你码完成签到,获得积分10
2秒前
超级宇宙二踢脚完成签到,获得积分10
3秒前
3秒前
4秒前
大气小新完成签到,获得积分10
4秒前
ILS完成签到 ,获得积分10
4秒前
Orange应助澜生采纳,获得10
5秒前
lin完成签到,获得积分10
6秒前
Ares发布了新的文献求助10
6秒前
6秒前
谭平完成签到 ,获得积分10
6秒前
7秒前
淡定紫菱完成签到,获得积分10
7秒前
所所应助HYH采纳,获得20
7秒前
7秒前
木香完成签到,获得积分10
8秒前
尘雾发布了新的文献求助10
9秒前
10秒前
高鑫完成签到 ,获得积分10
10秒前
英姑应助dd采纳,获得10
10秒前
Chan0501关注了科研通微信公众号
11秒前
11秒前
研友_LMNjkn发布了新的文献求助10
11秒前
tjunqi完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助下课了吧采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794