亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Correctable Landmark Discovery Via Large Models for Vision-Language Navigation

地标 计算机科学 人工智能
作者
Bingqian Lin,Yunshuang Nie,Ziming Wei,Yi Zhu,Hang Xu,Shikui Ma,Jianzhuang Liu,Xiaodan Liang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2024.3407759
摘要

Vision-Language Navigation (VLN) requires the agent to follow language instructions to reach a target position. A key factor for successful navigation is to align the landmarks implied in the instruction with diverse visual observations. However, previous VLN agents fail to perform accurate modality alignment especially in unexplored scenes, since they learn from limited navigation data and lack sufficient open-world alignment knowledge. In this work, we propose a new VLN paradigm, called CO rrectable La N dmark Di S c O very via L arge Mod E ls (CONSOLE). In CONSOLE, we cast VLN as an open-world sequential landmark discovery problem, by introducing a novel correctable landmark discovery scheme based on two large models ChatGPT and CLIP. Specifically, we use ChatGPT to provide rich open-world landmark cooccurrence commonsense, and conduct CLIP-driven landmark discovery based on these commonsense priors. To mitigate the noise in the priors due to the lack of visual constraints, we introduce a learnable cooccurrence scoring module, which corrects the importance of each cooccurrence according to actual observations for accurate landmark discovery. We further design an observation enhancement strategy for an elegant combination of our framework with different VLN agents, where we utilize the corrected landmark features to obtain enhanced observation features for action decision. Extensive experimental results on multiple popular VLN benchmarks (R2R, REVERIE, R4R, RxR) show the significant superiority of CONSOLE over strong baselines. Especially, our CONSOLE establishes the new state-of-the-art results on R2R and R4R in unseen scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捉迷藏完成签到,获得积分10
5秒前
18秒前
NexusExplorer应助杜梦婷采纳,获得10
45秒前
生命奋斗应助白华苍松采纳,获得20
54秒前
55秒前
杜梦婷发布了新的文献求助10
1分钟前
1分钟前
牛八先生完成签到,获得积分10
2分钟前
2分钟前
wanci应助coldstork采纳,获得10
2分钟前
2分钟前
coldstork发布了新的文献求助10
2分钟前
啊哈完成签到,获得积分10
3分钟前
3分钟前
3分钟前
能干海发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Jasper应助能干海采纳,获得10
3分钟前
4分钟前
一一应助白华苍松采纳,获得20
4分钟前
慕青应助喝粥阿旺采纳,获得10
5分钟前
5分钟前
喝粥阿旺发布了新的文献求助10
5分钟前
6分钟前
lena完成签到 ,获得积分10
6分钟前
能干海发布了新的文献求助10
6分钟前
茶茶完成签到,获得积分10
6分钟前
Kapur发布了新的文献求助30
6分钟前
xyu完成签到,获得积分10
7分钟前
sunny完成签到,获得积分10
7分钟前
Kapur完成签到,获得积分10
7分钟前
7分钟前
白华苍松发布了新的文献求助20
7分钟前
7分钟前
能干海完成签到,获得积分10
7分钟前
白华苍松发布了新的文献求助20
8分钟前
其乐融融发布了新的文献求助10
12分钟前
其乐融融完成签到,获得积分10
13分钟前
bkagyin应助Jennie采纳,获得10
13分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229738
求助须知:如何正确求助?哪些是违规求助? 2877248
关于积分的说明 8198649
捐赠科研通 2544723
什么是DOI,文献DOI怎么找? 1374636
科研通“疑难数据库(出版商)”最低求助积分说明 647010
邀请新用户注册赠送积分活动 621836