BIM-based indoor mobile robot initialization for construction automation using object detection

初始化 移动机器人 机器人 计算机科学 人工智能 瓶颈 卷积神经网络 移动机器人导航 计算机视觉 对象(语法) 目标检测 实时计算 机器人控制 嵌入式系统 模式识别(心理学) 程序设计语言
作者
Xinge Zhao,Chien Chern Cheah
出处
期刊:Automation in Construction [Elsevier]
卷期号:146: 104647-104647 被引量:3
标识
DOI:10.1016/j.autcon.2022.104647
摘要

In recent years, there has been increasing interest in robotic solutions to revolutionize the conventional construction industry. Despite various advances in developing mobile robotic solutions for construction automation. One key bottleneck towards a fully automated robotic solution in construction is the initialization of the mobile robot. Currently, most of the commercialized mobile construction robots are manually initialized before autonomous navigation can be performed at the construction sites for automated tasks. Even if the robot is initialized, the location information can be lost while navigating and re-initialization is required to resume the navigation. Any wrong initialization can cause failure in robot pose tracking and thus prevent the robot from performing the planned tasks. However, in indoor construction sites, GPS is not accessible, and indoor infrastructures, such as beacon devices are not available for robot initialization. In addition, construction environments are dynamic with significant change in scenes and structures for different construction blocks and floors, making pre-scanning of the environments and map matching difficult and time-consuming. An infrastructure-free and environment-independent robot initialization method is therefore required. In this paper, we propose an integrated Building Information Model (BIM)-based indoor robot initialization system using an object detector to automatically initialize the mobile robot when it is deployed at an unknown location. Convolutional neural network (CNN)-based object detection technique is used to detect and locate the visual features, which are widely distributed building components at construction sites. A feature matching algorithm is developed to correlate the acquired online information of detected features with geometric and semantic information retrieved from BIM. The robot location in the BIM coordinate frame is then estimated based on the feature association. Moreover, the proposed system aggregates the BIM information and the sensory information to supervise the online robot decision making, making the entire system fully automatic. The proposed system is validated through experiments in various environments including a university building and ongoing construction sites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wjsAljl完成签到,获得积分10
1秒前
swj完成签到,获得积分10
1秒前
善学以致用应助cimy采纳,获得10
2秒前
爰采唐矣发布了新的文献求助10
2秒前
2秒前
3秒前
薛十七完成签到,获得积分10
3秒前
4秒前
5秒前
藜誌发布了新的文献求助10
5秒前
wanci应助阳光的青槐采纳,获得10
5秒前
风中小刺猬完成签到,获得积分10
5秒前
明亮的诗兰完成签到,获得积分20
5秒前
liumou完成签到,获得积分10
6秒前
chenqiumu应助科研通管家采纳,获得20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
chenqiumu应助科研通管家采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
通行证应助科研通管家采纳,获得10
7秒前
chenqiumu应助科研通管家采纳,获得20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
玄风应助科研通管家采纳,获得10
7秒前
玄风应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
sunny完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得80
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
chenqiumu应助科研通管家采纳,获得20
7秒前
hs应助科研通管家采纳,获得30
7秒前
玄风应助科研通管家采纳,获得20
7秒前
无极微光应助科研通管家采纳,获得20
8秒前
8秒前
8秒前
haaay发布了新的文献求助10
8秒前
8秒前
猪猪hero发布了新的文献求助30
9秒前
扶丽君完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675