清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

BIM-based indoor mobile robot initialization for construction automation using object detection

初始化 移动机器人 机器人 计算机科学 人工智能 瓶颈 卷积神经网络 移动机器人导航 计算机视觉 对象(语法) 目标检测 实时计算 机器人控制 嵌入式系统 模式识别(心理学) 程序设计语言
作者
Xinge Zhao,Chien Chern Cheah
出处
期刊:Automation in Construction [Elsevier]
卷期号:146: 104647-104647 被引量:3
标识
DOI:10.1016/j.autcon.2022.104647
摘要

In recent years, there has been increasing interest in robotic solutions to revolutionize the conventional construction industry. Despite various advances in developing mobile robotic solutions for construction automation. One key bottleneck towards a fully automated robotic solution in construction is the initialization of the mobile robot. Currently, most of the commercialized mobile construction robots are manually initialized before autonomous navigation can be performed at the construction sites for automated tasks. Even if the robot is initialized, the location information can be lost while navigating and re-initialization is required to resume the navigation. Any wrong initialization can cause failure in robot pose tracking and thus prevent the robot from performing the planned tasks. However, in indoor construction sites, GPS is not accessible, and indoor infrastructures, such as beacon devices are not available for robot initialization. In addition, construction environments are dynamic with significant change in scenes and structures for different construction blocks and floors, making pre-scanning of the environments and map matching difficult and time-consuming. An infrastructure-free and environment-independent robot initialization method is therefore required. In this paper, we propose an integrated Building Information Model (BIM)-based indoor robot initialization system using an object detector to automatically initialize the mobile robot when it is deployed at an unknown location. Convolutional neural network (CNN)-based object detection technique is used to detect and locate the visual features, which are widely distributed building components at construction sites. A feature matching algorithm is developed to correlate the acquired online information of detected features with geometric and semantic information retrieved from BIM. The robot location in the BIM coordinate frame is then estimated based on the feature association. Moreover, the proposed system aggregates the BIM information and the sensory information to supervise the online robot decision making, making the entire system fully automatic. The proposed system is validated through experiments in various environments including a university building and ongoing construction sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NS发布了新的文献求助10
9秒前
37秒前
46秒前
隐形曼青应助噗噗蝶pd采纳,获得10
48秒前
1分钟前
噗噗蝶pd发布了新的文献求助10
1分钟前
今后应助CIXI采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
CIXI发布了新的文献求助10
1分钟前
SYLH应助DukeC采纳,获得10
1分钟前
1分钟前
dominic12361完成签到 ,获得积分10
1分钟前
1分钟前
彧辰完成签到 ,获得积分10
1分钟前
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
yw发布了新的文献求助200
2分钟前
yu完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
apt发布了新的文献求助10
2分钟前
NS发布了新的文献求助10
2分钟前
胡可完成签到 ,获得积分10
3分钟前
apt完成签到,获得积分10
3分钟前
NexusExplorer应助研友_5477B5采纳,获得10
4分钟前
诺奇完成签到,获得积分20
4分钟前
4分钟前
科研通AI2S应助123456采纳,获得10
4分钟前
研友_5477B5发布了新的文献求助10
4分钟前
科研通AI2S应助诺奇采纳,获得10
4分钟前
研友_5477B5完成签到,获得积分10
4分钟前
hautzhl完成签到,获得积分10
4分钟前
5分钟前
爱心完成签到 ,获得积分10
5分钟前
zyjsunye完成签到 ,获得积分0
5分钟前
5分钟前
maggiexjl完成签到,获得积分10
5分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434823
求助须知:如何正确求助?哪些是违规求助? 3032141
关于积分的说明 8944320
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492148
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685847