BIM-based indoor mobile robot initialization for construction automation using object detection

初始化 移动机器人 机器人 计算机科学 人工智能 瓶颈 卷积神经网络 移动机器人导航 计算机视觉 对象(语法) 目标检测 实时计算 机器人控制 嵌入式系统 模式识别(心理学) 程序设计语言
作者
Xinge Zhao,Chien Chern Cheah
出处
期刊:Automation in Construction [Elsevier]
卷期号:146: 104647-104647 被引量:3
标识
DOI:10.1016/j.autcon.2022.104647
摘要

In recent years, there has been increasing interest in robotic solutions to revolutionize the conventional construction industry. Despite various advances in developing mobile robotic solutions for construction automation. One key bottleneck towards a fully automated robotic solution in construction is the initialization of the mobile robot. Currently, most of the commercialized mobile construction robots are manually initialized before autonomous navigation can be performed at the construction sites for automated tasks. Even if the robot is initialized, the location information can be lost while navigating and re-initialization is required to resume the navigation. Any wrong initialization can cause failure in robot pose tracking and thus prevent the robot from performing the planned tasks. However, in indoor construction sites, GPS is not accessible, and indoor infrastructures, such as beacon devices are not available for robot initialization. In addition, construction environments are dynamic with significant change in scenes and structures for different construction blocks and floors, making pre-scanning of the environments and map matching difficult and time-consuming. An infrastructure-free and environment-independent robot initialization method is therefore required. In this paper, we propose an integrated Building Information Model (BIM)-based indoor robot initialization system using an object detector to automatically initialize the mobile robot when it is deployed at an unknown location. Convolutional neural network (CNN)-based object detection technique is used to detect and locate the visual features, which are widely distributed building components at construction sites. A feature matching algorithm is developed to correlate the acquired online information of detected features with geometric and semantic information retrieved from BIM. The robot location in the BIM coordinate frame is then estimated based on the feature association. Moreover, the proposed system aggregates the BIM information and the sensory information to supervise the online robot decision making, making the entire system fully automatic. The proposed system is validated through experiments in various environments including a university building and ongoing construction sites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默襄发布了新的文献求助10
1秒前
桂花乌龙完成签到,获得积分10
1秒前
1秒前
阿杜阿杜发布了新的文献求助10
2秒前
科研通AI6应助缺口口采纳,获得10
3秒前
Hao发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
万能图书馆应助苏休夫采纳,获得10
4秒前
啊棕发布了新的文献求助10
4秒前
一页墨城完成签到,获得积分10
5秒前
6秒前
yyy完成签到 ,获得积分10
6秒前
wanci发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
科研顺利发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助Henry采纳,获得10
7秒前
LEE发布了新的文献求助10
8秒前
阿杜阿杜完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
李火火火发布了新的文献求助10
10秒前
10秒前
小莹完成签到,获得积分10
10秒前
科研通AI6应助adminual采纳,获得10
10秒前
七七发布了新的文献求助10
10秒前
11秒前
168发布了新的文献求助10
11秒前
天天快乐应助吴吴凡采纳,获得10
11秒前
11秒前
Flo发布了新的文献求助10
11秒前
qian发布了新的文献求助10
11秒前
12秒前
科研通AI6应助仓鼠侠采纳,获得10
12秒前
清秀龙猫完成签到,获得积分10
12秒前
小马甲应助Sunflower采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503