BIM-based indoor mobile robot initialization for construction automation using object detection

初始化 移动机器人 机器人 计算机科学 人工智能 瓶颈 卷积神经网络 移动机器人导航 计算机视觉 对象(语法) 目标检测 实时计算 机器人控制 嵌入式系统 模式识别(心理学) 程序设计语言
作者
Xinge Zhao,Chien Chern Cheah
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:146: 104647-104647 被引量:3
标识
DOI:10.1016/j.autcon.2022.104647
摘要

In recent years, there has been increasing interest in robotic solutions to revolutionize the conventional construction industry. Despite various advances in developing mobile robotic solutions for construction automation. One key bottleneck towards a fully automated robotic solution in construction is the initialization of the mobile robot. Currently, most of the commercialized mobile construction robots are manually initialized before autonomous navigation can be performed at the construction sites for automated tasks. Even if the robot is initialized, the location information can be lost while navigating and re-initialization is required to resume the navigation. Any wrong initialization can cause failure in robot pose tracking and thus prevent the robot from performing the planned tasks. However, in indoor construction sites, GPS is not accessible, and indoor infrastructures, such as beacon devices are not available for robot initialization. In addition, construction environments are dynamic with significant change in scenes and structures for different construction blocks and floors, making pre-scanning of the environments and map matching difficult and time-consuming. An infrastructure-free and environment-independent robot initialization method is therefore required. In this paper, we propose an integrated Building Information Model (BIM)-based indoor robot initialization system using an object detector to automatically initialize the mobile robot when it is deployed at an unknown location. Convolutional neural network (CNN)-based object detection technique is used to detect and locate the visual features, which are widely distributed building components at construction sites. A feature matching algorithm is developed to correlate the acquired online information of detected features with geometric and semantic information retrieved from BIM. The robot location in the BIM coordinate frame is then estimated based on the feature association. Moreover, the proposed system aggregates the BIM information and the sensory information to supervise the online robot decision making, making the entire system fully automatic. The proposed system is validated through experiments in various environments including a university building and ongoing construction sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萱1988发布了新的文献求助10
1秒前
1秒前
xyf完成签到,获得积分10
1秒前
Engen发布了新的文献求助10
1秒前
Emilia完成签到,获得积分10
1秒前
2秒前
伶俐的书南完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
碳土不凡完成签到 ,获得积分10
2秒前
114555发布了新的文献求助10
3秒前
他方世界发布了新的文献求助10
3秒前
3秒前
啦啦啦完成签到,获得积分10
3秒前
迷路的晓旋完成签到,获得积分10
4秒前
禁止通行发布了新的文献求助10
4秒前
Ray完成签到,获得积分10
6秒前
fmd123完成签到,获得积分20
6秒前
我想吃薯条完成签到 ,获得积分10
6秒前
poppysss发布了新的文献求助10
7秒前
可爱的函函应助一把过采纳,获得10
7秒前
UPUP完成签到,获得积分10
8秒前
DDF完成签到 ,获得积分10
8秒前
9秒前
顾矜应助BenQiu采纳,获得10
9秒前
孙福禄应助牛奶秋刀鱼采纳,获得10
10秒前
@@@发布了新的文献求助10
10秒前
Eusha完成签到,获得积分10
11秒前
吴家辉完成签到,获得积分10
11秒前
zhanwenlin完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
追寻的问玉完成签到 ,获得积分10
13秒前
博修完成签到,获得积分10
15秒前
上官若男应助冷酷严青采纳,获得10
15秒前
辉夜折影完成签到,获得积分10
16秒前
16秒前
16秒前
hayden发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582