Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization

作业车间调度 数学优化 计算机科学 调度(生产过程) 运筹学 早熟收敛 可再生能源 帕累托原理 工业工程 地铁列车时刻表 工程类 粒子群优化 数学 操作系统 电气工程
作者
Shouhua Luo,Linxuan Zhang,Yushun Fan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:234: 1365-1384 被引量:101
标识
DOI:10.1016/j.jclepro.2019.06.151
摘要

In recent years, confronted with serious global warming and rapid exhaustion of non-renewable resources, green manufacturing has become an increasingly important theme in the world. As a significant way to achieve the purpose of green manufacturing, the energy-efficient scheduling has been intensively studied by both academia and industry due to its ability to keep a compromise between production efficiency and environmental impacts. To this end, this study investigates the multi-objective flexible job shop scheduling problem (MOFJSP) with variable processing speeds aiming at minimizing the makespan and total energy consumption simultaneously. An elaborately-designed multi-objective grey wolf optimization (MOGWO) algorithm is proposed to address this issue. Specifically, a three-vector representation corresponding to three sub-problems including machine assignment, speed assignment and operation sequence is utilized for chromosome encoding. A new decoding method (NDM) is presented to obtain active schedules and reach a trade-off between two conflicting criteria. In consideration of the multi-objective problem nature, two Pareto-based mechanisms are developed to determine the leader wolves and the lowest (worst) wolves so that the hierarchy of a wolf pack can be constructed. Finally, to avoid premature convergence and maintain population diversity, a new position updating mechanism (NPUM), which integrates information from both the leader wolves and the lowest wolves based on a comprehensive point of view, is developed to guide the other wolves in the searching space. Extensive numerical experiments on 35 different scale benchmarks have not only verified the effectiveness of NDM and NPUM but also demonstrated that the proposed MOGWO is more effective than well-known multi-objective evolutionary algorithms such as NSGA-II and SPEA-II.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助超帅的元柏采纳,获得10
刚刚
1秒前
拉萨小医生完成签到,获得积分10
3秒前
4秒前
Vicky完成签到 ,获得积分10
5秒前
Rencal发布了新的文献求助10
5秒前
华仔应助花凉采纳,获得10
5秒前
大模型应助LALball采纳,获得10
5秒前
7秒前
7秒前
8秒前
鳗鱼厉发布了新的文献求助10
10秒前
俭朴尔竹发布了新的文献求助10
11秒前
Wang完成签到,获得积分10
13秒前
13秒前
13秒前
清新的安白完成签到,获得积分10
13秒前
13秒前
OAO发布了新的文献求助10
13秒前
14秒前
sanling应助刘璇1采纳,获得10
15秒前
狗儿吖完成签到,获得积分10
15秒前
KKKkkkkk完成签到,获得积分10
15秒前
乐生发布了新的文献求助20
16秒前
17秒前
18秒前
李生完成签到,获得积分10
18秒前
19秒前
20秒前
孤竹雅弦完成签到,获得积分10
20秒前
balko发布了新的文献求助10
21秒前
s010w1ngpixy发布了新的文献求助10
21秒前
21秒前
zqx完成签到,获得积分20
21秒前
22秒前
zqx发布了新的文献求助10
23秒前
25秒前
蔡琪发布了新的文献求助10
25秒前
传奇3应助OAO采纳,获得10
25秒前
华仔应助彩色的台灯采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644