Machine learning for differentiating metastatic and completely responded sclerotic bone lesion in prostate cancer: a retrospective radiomics study

医学 前列腺癌 转移 骨转移 病变 正电子发射断层摄影术 放射科 核医学 癌症 病理 内科学
作者
Emine Acar,Asım Leblebici,Berat Ender Ellidokuz,Yasemin Başbınar,Gamze Çapa Kaya
出处
期刊:British Journal of Radiology [Wiley]
卷期号:92 (1101) 被引量:55
标识
DOI:10.1259/bjr.20190286
摘要

Using CT texture analysis and machine learning methods, this study aims to distinguish the lesions imaged via 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/CT as metastatic and completely responded in patients with known bone metastasis and who were previously treated.We retrospectively reviewed the 68Ga-PSMA PET/CT images of 75 patients after treatment, who were previously diagnosed with prostate cancer and had known bone metastasis. A texture analysis was performed on the metastatic lesions showing PSMA expression and completely responded sclerotic lesions without PSMA expression through CT images. Textural features were compared in two groups. Thus, the distinction of metastasis/completely responded lesions and the most effective parameters in this issue were determined by using various methods [decision tree, discriminant analysis, support vector machine (SVM), k-nearest neighbor (KNN), ensemble classifier] in machine learning.In 28 of the 35 texture analysis findings, there was a statistically significant difference between the two groups. The Weighted KNN method had the highest accuracy and area under the curve, has been chosen as the best model. The weighted KNN algorithm was succeeded to differentiate sclerotic lesion from metastasis or completely responded lesions with 0.76 area under the curve. GLZLM_SZHGE and histogram-based kurtosis were found to be the most important parameters in differentiating metastatic and completely responded sclerotic lesions.Metastatic lesions and completely responded sclerosis areas in CT images, as determined by 68Ga-PSMA PET, could be distinguished with good accuracy using texture analysis and machine learning (Weighted KNN algorithm) in prostate cancer.Our findings suggest that, with the use of newly emerging software, CT imaging can contribute to identifying the metastatic lesions in prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
komisan完成签到 ,获得积分10
8秒前
9秒前
司徒诗蕾完成签到 ,获得积分10
12秒前
思源应助华无剑采纳,获得10
13秒前
morris发布了新的文献求助20
19秒前
凌代萱完成签到 ,获得积分10
22秒前
Ryan完成签到 ,获得积分10
25秒前
铜锣湾小研仔完成签到,获得积分10
25秒前
27秒前
29秒前
华无剑发布了新的文献求助10
32秒前
痴情的靖柔完成签到 ,获得积分10
34秒前
ryan1300完成签到 ,获得积分10
36秒前
38秒前
李1完成签到 ,获得积分10
39秒前
iW完成签到 ,获得积分10
41秒前
媛媛完成签到 ,获得积分10
45秒前
龙舞星完成签到,获得积分10
47秒前
xuan完成签到,获得积分10
48秒前
xiaohong完成签到 ,获得积分10
50秒前
酷波er应助morris采纳,获得10
50秒前
1分钟前
李凤凤完成签到 ,获得积分10
1分钟前
shouyu29应助科研通管家采纳,获得10
1分钟前
kk应助科研通管家采纳,获得200
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
511完成签到 ,获得积分10
1分钟前
KrisTina完成签到 ,获得积分10
1分钟前
彪行天下完成签到,获得积分10
1分钟前
孔刚完成签到 ,获得积分10
1分钟前
拓跋傲薇完成签到,获得积分10
1分钟前
任性吐司完成签到 ,获得积分10
1分钟前
高大草莓完成签到 ,获得积分10
1分钟前
研友_Z119gZ完成签到 ,获得积分10
1分钟前
大卫戴完成签到 ,获得积分10
1分钟前
morris给morris的求助进行了留言
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674531
求助须知:如何正确求助?哪些是违规求助? 3229828
关于积分的说明 9787158
捐赠科研通 2940432
什么是DOI,文献DOI怎么找? 1611923
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736488