材料科学
复合数
导电体
纳米技术
工程物理
复合材料
工程类
作者
Yimin Yao,Xiaoliang Zeng,Rong Sun,Jianbin Xu,Ching‐Ping Wong
标识
DOI:10.1021/acsami.6b04636
摘要
The rapid development of modern electronics and three-dimensional integration sets stringent requirements for efficient heat removal of thermal-management materials to ensure the long lifetime of the electronics. However, conventional polymer composites that have been used widely as thermal-management materials suffer from undesired thermal conductivity lower than 10 W m(-1) K(-1). In this work, we report a novel thermally conductive composite paper based on the thought of bioinspired engineering. The advantage of the bioinspired papers over conventional composites lies in that they possess a very high in-plane thermal conductivity up to 21.7 W m(-1) K(-1) along with good mechanical properties and high electrical insulation. We attribute the high thermal conductivity to the improved interfacial interaction between assembled components through the introduction of silver nanoparticles and the oriented structure based on boron nitride nanosheets and silicon carbide nanowires. This thought based on bioinspired engineering provides a creative opportunity for design and fabrication of novel thermally conductive materials, and this kind of composite paper has potential applications in powerful integrated microelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI