Deep Unfolding Tensor Rank Minimization With Generalized Detail Injection for Pansharpening

计算机科学 多光谱图像 概化理论 秩(图论) 人工智能 张量(固有定义) 缩小 算法 模式识别(心理学) 数学 统计 组合数学 纯数学 程序设计语言
作者
Mai Thanh Nhat Truong,Edmund Y. Lam,Chul Lee
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:1
标识
DOI:10.1109/tgrs.2024.3392215
摘要

Pansharpening aims to generate a high-resolution multispectral (HRMS) image by merging a low-resolution multispectral (LRMS) image with a high-resolution panchromatic (PAN) image. While traditional model-based pansharpening algorithms have strong theoretical foundations, their performance and generalizability are limited by handcrafted formulations. In contrast, recent deep learning approaches outperform model-based algorithms but do not effectively consider the physical properties of multispectral (MS) images, such as their spatial and spectral dependencies. These physical properties facilitate the exploitation of the actual imaging process, leading to enhanced spatial and spectral fidelities. In this work, we propose a deep unfolded tensor rank minimization framework with generalized detail injection for pansharpening to overcome the weaknesses of both model- and learning-based approaches while leveraging their advantages. Specifically, we first formulate the pansharpening task as a tensor rank minimization problem to exploit the low-rankness of MS images, providing a robust theoretical foundation on the physical properties of MS data. We also develop a generalized detail injection component, which effectively exploits the information in the PAN images, and incorporate it into the optimization to improve generalizability and representation capability. Then, we define a data-driven regularizer to compensate for modeling inaccuracies in the low-rank model and solve the optimization problem using an iterative technique. Finally, the iterative algorithm is unfolded into a multistage deep network, in which the optimization variables are solved by closed-form solutions and a data-driven regularizer in each stage. Experimental results on various MS image datasets demonstrate that the proposed algorithm achieves better pansharpening performance and interpretability than state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋流沙发布了新的文献求助10
刚刚
不安的松完成签到 ,获得积分10
1秒前
suofzcn完成签到,获得积分10
1秒前
宣依云发布了新的文献求助10
1秒前
求学完成签到,获得积分10
1秒前
cccc完成签到,获得积分10
2秒前
李健应助Vicky采纳,获得10
3秒前
3秒前
hai完成签到,获得积分10
4秒前
X_Nano完成签到,获得积分10
4秒前
哈哈哈发布了新的文献求助10
4秒前
Lee完成签到,获得积分10
5秒前
6秒前
所所应助谦让的又蓝采纳,获得10
6秒前
555646446发布了新的文献求助10
6秒前
6秒前
7秒前
羊笨笨完成签到,获得积分10
7秒前
momomo完成签到,获得积分10
7秒前
共享精神应助自由人采纳,获得10
8秒前
8秒前
挽棠发布了新的文献求助10
9秒前
逆境完成签到,获得积分10
9秒前
wblydz完成签到 ,获得积分20
10秒前
英姑应助小凡采纳,获得30
10秒前
Cccrik发布了新的文献求助10
11秒前
NexusExplorer应助deng采纳,获得10
12秒前
12秒前
背后的渊思完成签到,获得积分10
12秒前
vino发布了新的文献求助10
13秒前
forest完成签到,获得积分10
13秒前
13秒前
星辰大海应助满满采纳,获得10
13秒前
13秒前
董小李完成签到,获得积分10
14秒前
14秒前
游侠客完成签到,获得积分10
14秒前
Cccrik完成签到,获得积分10
15秒前
HighFeng_Lei完成签到,获得积分10
15秒前
HUSHIYI发布了新的文献求助10
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180194
求助须知:如何正确求助?哪些是违规求助? 2830601
关于积分的说明 7978929
捐赠科研通 2492151
什么是DOI,文献DOI怎么找? 1329250
科研通“疑难数据库(出版商)”最低求助积分说明 635708
版权声明 602954