Reconstructing Images Through Multimode Fibers From the Up-Conversion Speckle Patterns via Deep Learning

斑点图案 多模光纤 计算机科学 人工智能 计算机视觉 散斑噪声 迭代重建 模式识别(心理学) 光学 光纤 物理 电信
作者
Yanzhu Zhang,Hao Wu,He Zhao,Yong Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 55561-55568 被引量:3
标识
DOI:10.1109/access.2023.3279257
摘要

The mode mixing and mode dispersion in the multimode fiber (MMF) will produce complex speckle patterns in the distal end of the fiber as an object passes through the MMF, rendering image reconstruction to be a challenging task. In recent years, convolutional neural networks have been successfully applied to image reconstruction from speckles. However, the imaging spectra of these studies are mostly in the visible spectrum range and require complete speckle information for reconstruction. In this paper, researchers build an optical imaging system that employs up-conversion imaging technology to collect speckle patterns generated by infrared light transmitting through a multimode fiber and a frequency-doubling crystal. They propose a speckle restoration network (SRNet) based on a generative adversarial network (GAN) to reconstruct speckle images. The generator of GAN uses ResNest and atrous spatial pyramid pooling (ASPP) to extract multi-level features and multi-scale context information, respectively. The discriminator of GAN significantly improves the quality of the reconstructed image generated by the generator. In addition, researchers adopt a special training method named pre-training generator to avoid gradient disappearance or gradient explosion in the training process. With the designed network, high-quality images were successfully reconstructed even with only a portion of the speckle information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ah_junlei完成签到,获得积分10
刚刚
李健应助Cindy采纳,获得10
1秒前
1秒前
2秒前
剑来不来完成签到,获得积分10
4秒前
He完成签到 ,获得积分10
4秒前
施旭佳完成签到,获得积分10
6秒前
12545完成签到,获得积分10
7秒前
8秒前
浮游应助狂犬喵采纳,获得10
8秒前
平淡的井完成签到 ,获得积分10
8秒前
8秒前
8秒前
英姑应助SHASHA采纳,获得10
8秒前
10秒前
10秒前
11秒前
11秒前
淡淡天空关注了科研通微信公众号
12秒前
12秒前
王不留行完成签到,获得积分10
12秒前
13秒前
777发布了新的文献求助10
13秒前
Hello应助阜睿采纳,获得10
14秒前
yeezy123发布了新的文献求助10
14秒前
绝版肉肉发布了新的文献求助30
14秒前
田様应助Genius采纳,获得10
15秒前
15秒前
15秒前
15秒前
飘苒发布了新的文献求助10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
华仔应助721采纳,获得10
17秒前
家夜雪发布了新的文献求助10
18秒前
无花果应助忧心的诗云采纳,获得10
18秒前
zhangwenjie发布了新的文献求助30
21秒前
21秒前
堇妗完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483