Selective leaching process for efficient and rapid recycling of spent lithium iron phosphate batteries

浸出(土壤学) 氧化剂 磷酸铁 化学 磷酸铁锂 溶解 X射线光电子能谱 无机化学 磷酸盐 化学工程 电化学 环境科学 有机化学 土壤水分 土壤科学 物理化学 工程类 电极
作者
Yuchuan Xiong,Zhenzhen Guo,Tao Mei,Yurong Han,Yueyue Wang,Xin Xiong,Yifan Tang,Xianbao Wang
出处
期刊:Waste Management & Research [SAGE]
卷期号:41 (11): 1613-1621 被引量:1
标识
DOI:10.1177/0734242x231168051
摘要

With the continuous development of new energy vehicles, the number of decommissioned lithium iron phosphate (LiFePO4) batteries has been constantly increasing. Therefore, it is necessary to recover metal from spent LiFePO4 batteries due to the high potential for environmental protection and high resource value. In this study, sodium persulfate (Na2S2O8) was selected as the oxidant to regulate and control the oxidation state and proton activity of the leaching solution through its high oxidizing ability. Selective recovery of lithium from LiFePO4 batteries was achieved by oxidizing LiFePO4 to iron phosphate (FePO4) during the leaching process. This paper reports an extensive investigation of the effects of various factors, including the acid concentration, initial volume fraction of the oxidant, reaction temperature, solid-liquid ratio, and reaction time, on lithium leaching. Li+ reached a high leaching rate of 93.3% within 5 minutes even at a low concentration of sulphuric acid (H2SO4), and high-purity lithium carbonate (Li2CO3) was obtained through impurity removal and precipitation reactions. In addition, the leaching mechanism was analysed by both X-ray diffraction and X-ray photoelectron spectroscopy characterization. The results show that the obtained high lithium-ion (Li+) leaching efficiency and fast Li+ leaching time can be ascribed to the superior oxidizing properties of Na2S2O8 and the stability of the crystal structure of LiFePO4 during the oxidative leaching process. The adopted method has significant advantages in terms of safety, efficiency and environmental protection, which are conducive to the sustainable development of lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sumeiling完成签到,获得积分20
刚刚
朴素的鸡完成签到,获得积分20
1秒前
大七发布了新的文献求助10
1秒前
zzzq完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
请叫我风吹麦浪应助卡卡采纳,获得10
2秒前
传奇3应助起司嗯采纳,获得10
3秒前
remimazolam发布了新的文献求助10
4秒前
在水一方应助悦耳寒松采纳,获得10
4秒前
满座完成签到,获得积分10
4秒前
科研通AI2S应助coffee采纳,获得10
4秒前
5秒前
雪山飞龙发布了新的文献求助30
5秒前
科研通AI5应助phd采纳,获得10
6秒前
善学以致用应助京阿尼采纳,获得10
6秒前
Sylvia完成签到,获得积分10
6秒前
朴素的鸡发布了新的文献求助10
6秒前
SCI发布了新的文献求助10
6秒前
凹凸曼打小傻蛋完成签到 ,获得积分10
7秒前
Enoch完成签到,获得积分10
7秒前
Sara完成签到,获得积分10
7秒前
7秒前
zhuzhu发布了新的文献求助20
7秒前
YUZU发布了新的文献求助10
8秒前
8秒前
9秒前
shirleeyeahe完成签到,获得积分10
10秒前
10秒前
特特雷珀萨努完成签到 ,获得积分10
10秒前
京阿尼完成签到,获得积分10
10秒前
风雨发布了新的文献求助10
10秒前
orixero应助今非采纳,获得10
10秒前
平常的G完成签到,获得积分10
11秒前
11秒前
小石头完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794