An Effective COVID-19 CT Image Denoising Method Based on a Deep Convolutional Neural Network

降噪 卷积神经网络 人工智能 计算机科学 噪音(视频) 模式识别(心理学) 深度学习 非本地手段 图像(数学) 图像去噪 计算机视觉
作者
Hanyue Liu,Chunsheng Zhang,Yurong Guo,Lin Qingming,Zhanjiang Lan,Mingyang Jiang,Jie Lian,Xueyan Chen,Xiaojing Fan
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:16 (4) 被引量:1
标识
DOI:10.2174/2666255816666220920150916
摘要

Background: Faced with the global threat posed by SARS-CoV-2 (COVID-19), lowdose computed tomography (LDCT), as the primary diagnostic tool, is often accompanied by high levels of noise. This can easily interfere with the radiologist's assessment. Convolutional neural networks (CNN), as a method of deep learning, have been shown to have excellent effects in image denoising. Objective: The objective of the study was to use modified convolutional neural network algorithm to train the denoising model. The purpose was to make the model extract the highlighted features of the lesion region better and ensure its effectiveness in removing noise from COVID-19 lung CT images, preserving more important detail information of the images and reducing the adverse effects of denoising. Methods: We propose a CNN-based deformable convolutional denoising neural network (DCDNet). By combining deformable convolution methods with residual learning on the basis of CNN structure, more image detail features are retained in CT image denoising. Result: According to the noise reduction evaluation index of PSNR, SSIM and RMSE, DCDNet shows excellent denoising performance for COVID-19 CT images. From the visual effect of denoising, DCDNet can effectively remove image noise and preserve more detailed features of lung lesions. Conclusion: The experimental results indicate that the DCDNet-trained model is more suitable for image denoising of COVID-19 than traditional image denoising algorithms under the same training set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
自然的诗翠完成签到,获得积分10
1秒前
冷酷芷雪完成签到,获得积分10
2秒前
早早发论文完成签到,获得积分10
2秒前
苗广山完成签到,获得积分10
2秒前
Quin完成签到,获得积分10
2秒前
BatFaith发布了新的文献求助10
3秒前
Nathan完成签到,获得积分10
3秒前
4秒前
lulalula完成签到,获得积分10
4秒前
pzc完成签到,获得积分10
4秒前
汤汤汤汤圆完成签到,获得积分10
5秒前
黑宝坨完成签到 ,获得积分10
5秒前
hanlin完成签到,获得积分10
5秒前
Gurlstrian完成签到,获得积分10
5秒前
忧郁的老师应助WIK采纳,获得20
6秒前
lily发布了新的文献求助10
6秒前
大气凝云完成签到,获得积分10
6秒前
黎黎原上草完成签到,获得积分10
7秒前
风清扬应助lihaifeng采纳,获得10
7秒前
咪路完成签到,获得积分10
8秒前
JOE完成签到,获得积分10
8秒前
三颗板牙完成签到,获得积分10
8秒前
淡定夜山完成签到,获得积分10
9秒前
谷飞飞完成签到,获得积分10
9秒前
钱进完成签到,获得积分10
10秒前
Yolo发布了新的文献求助10
11秒前
呢n完成签到 ,获得积分10
12秒前
忱白发布了新的文献求助10
12秒前
蹦跶蹦跶呆完成签到,获得积分10
12秒前
WX完成签到,获得积分10
12秒前
黑白发布了新的文献求助10
12秒前
正直的冷珍完成签到,获得积分10
13秒前
Cherish完成签到,获得积分10
13秒前
Alike完成签到,获得积分10
13秒前
siyan156完成签到,获得积分10
14秒前
dreamdraver完成签到,获得积分10
14秒前
顾矜应助Fred采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478