An Effective COVID-19 CT Image Denoising Method Based on a Deep Convolutional Neural Network

降噪 卷积神经网络 人工智能 计算机科学 噪音(视频) 模式识别(心理学) 深度学习 非本地手段 图像(数学) 图像去噪 计算机视觉
作者
Hanyue Liu,Chunsheng Zhang,Yurong Guo,Lin Qingming,Zhanjiang Lan,Mingyang Jiang,Jie Lian,Xueyan Chen,Xiaojing Fan
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:16 (4) 被引量:1
标识
DOI:10.2174/2666255816666220920150916
摘要

Background: Faced with the global threat posed by SARS-CoV-2 (COVID-19), lowdose computed tomography (LDCT), as the primary diagnostic tool, is often accompanied by high levels of noise. This can easily interfere with the radiologist's assessment. Convolutional neural networks (CNN), as a method of deep learning, have been shown to have excellent effects in image denoising. Objective: The objective of the study was to use modified convolutional neural network algorithm to train the denoising model. The purpose was to make the model extract the highlighted features of the lesion region better and ensure its effectiveness in removing noise from COVID-19 lung CT images, preserving more important detail information of the images and reducing the adverse effects of denoising. Methods: We propose a CNN-based deformable convolutional denoising neural network (DCDNet). By combining deformable convolution methods with residual learning on the basis of CNN structure, more image detail features are retained in CT image denoising. Result: According to the noise reduction evaluation index of PSNR, SSIM and RMSE, DCDNet shows excellent denoising performance for COVID-19 CT images. From the visual effect of denoising, DCDNet can effectively remove image noise and preserve more detailed features of lung lesions. Conclusion: The experimental results indicate that the DCDNet-trained model is more suitable for image denoising of COVID-19 than traditional image denoising algorithms under the same training set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
brucelin发布了新的文献求助10
1秒前
1秒前
杨wx发布了新的文献求助10
1秒前
迪er完成签到,获得积分10
2秒前
将离发布了新的文献求助10
2秒前
爆米花应助爵士黄瓜采纳,获得10
2秒前
Ava应助kkkk采纳,获得10
2秒前
剩下的盛夏完成签到,获得积分10
2秒前
老孔发布了新的文献求助10
3秒前
安静的幻儿完成签到,获得积分10
4秒前
在水一方应助善良香岚采纳,获得10
4秒前
4秒前
5秒前
一只小学弱完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
xxcc12356完成签到,获得积分10
9秒前
冷傲的曼柔完成签到 ,获得积分10
9秒前
10秒前
11秒前
樊焕焕发布了新的文献求助20
13秒前
13秒前
14秒前
14秒前
林霄发布了新的文献求助10
14秒前
bkagyin应助L同学采纳,获得10
15秒前
vicky发布了新的文献求助10
15秒前
15秒前
丰富老鼠完成签到,获得积分10
16秒前
16秒前
xuleiman发布了新的文献求助10
18秒前
19秒前
19秒前
mmyyff发布了新的文献求助10
19秒前
lll发布了新的文献求助10
20秒前
20秒前
xxcc12356发布了新的文献求助100
20秒前
轻松的天真完成签到,获得积分10
20秒前
可爱的函函应助梓榆采纳,获得10
21秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384679
求助须知:如何正确求助?哪些是违规求助? 4507461
关于积分的说明 14028131
捐赠科研通 4417171
什么是DOI,文献DOI怎么找? 2426330
邀请新用户注册赠送积分活动 1419077
关于科研通互助平台的介绍 1397405