An Effective COVID-19 CT Image Denoising Method Based on a Deep Convolutional Neural Network

降噪 卷积神经网络 人工智能 计算机科学 噪音(视频) 模式识别(心理学) 深度学习 非本地手段 图像(数学) 图像去噪 计算机视觉
作者
Hanyue Liu,Chunsheng Zhang,Yurong Guo,Lin Qingming,Zhanjiang Lan,Mingyang Jiang,Jie Lian,Xueyan Chen,Xiaojing Fan
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:16 (4) 被引量:1
标识
DOI:10.2174/2666255816666220920150916
摘要

Background: Faced with the global threat posed by SARS-CoV-2 (COVID-19), lowdose computed tomography (LDCT), as the primary diagnostic tool, is often accompanied by high levels of noise. This can easily interfere with the radiologist's assessment. Convolutional neural networks (CNN), as a method of deep learning, have been shown to have excellent effects in image denoising. Objective: The objective of the study was to use modified convolutional neural network algorithm to train the denoising model. The purpose was to make the model extract the highlighted features of the lesion region better and ensure its effectiveness in removing noise from COVID-19 lung CT images, preserving more important detail information of the images and reducing the adverse effects of denoising. Methods: We propose a CNN-based deformable convolutional denoising neural network (DCDNet). By combining deformable convolution methods with residual learning on the basis of CNN structure, more image detail features are retained in CT image denoising. Result: According to the noise reduction evaluation index of PSNR, SSIM and RMSE, DCDNet shows excellent denoising performance for COVID-19 CT images. From the visual effect of denoising, DCDNet can effectively remove image noise and preserve more detailed features of lung lesions. Conclusion: The experimental results indicate that the DCDNet-trained model is more suitable for image denoising of COVID-19 than traditional image denoising algorithms under the same training set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
顺拐完成签到,获得积分20
2秒前
科研通AI6应助accept白采纳,获得10
2秒前
2秒前
清脆靳完成签到,获得积分10
3秒前
3秒前
lulu发布了新的文献求助10
4秒前
岗岗发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
一丢丢发布了新的文献求助30
6秒前
白潇潇完成签到 ,获得积分10
6秒前
小蘑菇应助Z01采纳,获得10
6秒前
Eon发布了新的文献求助10
7秒前
无极微光应助只想摆烂采纳,获得20
7秒前
哈哈哈哈哈完成签到,获得积分10
8秒前
8秒前
小鳄鱼发布了新的文献求助10
10秒前
zhui发布了新的文献求助10
11秒前
22发布了新的文献求助10
11秒前
11秒前
天真醉波完成签到 ,获得积分10
11秒前
lily发布了新的文献求助10
11秒前
12秒前
CoCoco完成签到 ,获得积分10
12秒前
Uynaux完成签到,获得积分10
12秒前
可爱的函函应助妖妖灵1111采纳,获得10
13秒前
13秒前
qb发布了新的文献求助30
16秒前
22完成签到,获得积分10
16秒前
白小爪发布了新的文献求助10
16秒前
CipherSage应助12采纳,获得10
18秒前
18秒前
田様应助Eon采纳,获得10
18秒前
Xie发布了新的文献求助30
18秒前
充电宝应助明理听云采纳,获得10
19秒前
DP完成签到,获得积分10
19秒前
19秒前
钱俊亚完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598772
求助须知:如何正确求助?哪些是违规求助? 4684180
关于积分的说明 14834106
捐赠科研通 4664702
什么是DOI,文献DOI怎么找? 2537384
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470606