已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Effective COVID-19 CT Image Denoising Method Based on a Deep Convolutional Neural Network

降噪 卷积神经网络 人工智能 计算机科学 噪音(视频) 模式识别(心理学) 深度学习 非本地手段 图像(数学) 图像去噪 计算机视觉
作者
Hanyue Liu,Chunsheng Zhang,Yurong Guo,Lin Qingming,Zhanjiang Lan,Mingyang Jiang,Jie Lian,Xueyan Chen,Xiaojing Fan
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:16 (4) 被引量:1
标识
DOI:10.2174/2666255816666220920150916
摘要

Background: Faced with the global threat posed by SARS-CoV-2 (COVID-19), lowdose computed tomography (LDCT), as the primary diagnostic tool, is often accompanied by high levels of noise. This can easily interfere with the radiologist's assessment. Convolutional neural networks (CNN), as a method of deep learning, have been shown to have excellent effects in image denoising. Objective: The objective of the study was to use modified convolutional neural network algorithm to train the denoising model. The purpose was to make the model extract the highlighted features of the lesion region better and ensure its effectiveness in removing noise from COVID-19 lung CT images, preserving more important detail information of the images and reducing the adverse effects of denoising. Methods: We propose a CNN-based deformable convolutional denoising neural network (DCDNet). By combining deformable convolution methods with residual learning on the basis of CNN structure, more image detail features are retained in CT image denoising. Result: According to the noise reduction evaluation index of PSNR, SSIM and RMSE, DCDNet shows excellent denoising performance for COVID-19 CT images. From the visual effect of denoising, DCDNet can effectively remove image noise and preserve more detailed features of lung lesions. Conclusion: The experimental results indicate that the DCDNet-trained model is more suitable for image denoising of COVID-19 than traditional image denoising algorithms under the same training set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tong童完成签到 ,获得积分10
2秒前
Orange应助合适的安卉采纳,获得30
2秒前
导师的心腹大患V完成签到,获得积分10
5秒前
7秒前
11秒前
11秒前
chujun_cai完成签到 ,获得积分10
11秒前
younger完成签到,获得积分10
13秒前
ZTLlele完成签到 ,获得积分10
13秒前
13秒前
思源应助洞两采纳,获得10
14秒前
双青豆完成签到 ,获得积分10
14秒前
OnlyHarbour完成签到,获得积分10
15秒前
18秒前
假茂茂发布了新的文献求助10
19秒前
上蓝南宫完成签到,获得积分20
20秒前
OnlyHarbour发布了新的文献求助10
21秒前
23秒前
mwm完成签到 ,获得积分10
24秒前
Ava应助上蓝南宫采纳,获得10
24秒前
呵呵哒完成签到,获得积分10
24秒前
阿朱关注了科研通微信公众号
24秒前
25秒前
czcmh给加菲丰丰的求助进行了留言
27秒前
山月系晚星完成签到,获得积分10
27秒前
呵呵哒发布了新的文献求助80
28秒前
注恤明完成签到,获得积分10
29秒前
糊涂的蛋挞完成签到 ,获得积分20
29秒前
sep完成签到 ,获得积分10
29秒前
30秒前
现代期待完成签到,获得积分10
30秒前
无花果应助小池同学采纳,获得10
31秒前
31秒前
呆萌海亦完成签到,获得积分10
32秒前
younger发布了新的文献求助10
37秒前
39秒前
39秒前
lmy完成签到 ,获得积分10
42秒前
Bluestar完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509080
求助须知:如何正确求助?哪些是违规求助? 4604125
关于积分的说明 14489198
捐赠科研通 4538775
什么是DOI,文献DOI怎么找? 2487190
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838