An Effective COVID-19 CT Image Denoising Method Based on a Deep Convolutional Neural Network

降噪 卷积神经网络 人工智能 计算机科学 噪音(视频) 模式识别(心理学) 深度学习 非本地手段 图像(数学) 图像去噪 计算机视觉
作者
Hanyue Liu,Chunsheng Zhang,Yurong Guo,Lin Qingming,Zhanjiang Lan,Mingyang Jiang,Jie Lian,Xueyan Chen,Xiaojing Fan
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:16 (4) 被引量:1
标识
DOI:10.2174/2666255816666220920150916
摘要

Background: Faced with the global threat posed by SARS-CoV-2 (COVID-19), lowdose computed tomography (LDCT), as the primary diagnostic tool, is often accompanied by high levels of noise. This can easily interfere with the radiologist's assessment. Convolutional neural networks (CNN), as a method of deep learning, have been shown to have excellent effects in image denoising. Objective: The objective of the study was to use modified convolutional neural network algorithm to train the denoising model. The purpose was to make the model extract the highlighted features of the lesion region better and ensure its effectiveness in removing noise from COVID-19 lung CT images, preserving more important detail information of the images and reducing the adverse effects of denoising. Methods: We propose a CNN-based deformable convolutional denoising neural network (DCDNet). By combining deformable convolution methods with residual learning on the basis of CNN structure, more image detail features are retained in CT image denoising. Result: According to the noise reduction evaluation index of PSNR, SSIM and RMSE, DCDNet shows excellent denoising performance for COVID-19 CT images. From the visual effect of denoising, DCDNet can effectively remove image noise and preserve more detailed features of lung lesions. Conclusion: The experimental results indicate that the DCDNet-trained model is more suitable for image denoising of COVID-19 than traditional image denoising algorithms under the same training set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
法号胡来完成签到,获得积分10
1秒前
坚强的缘分完成签到,获得积分10
1秒前
文光完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
2秒前
csy应助zjw8456采纳,获得10
2秒前
奶油橙子完成签到,获得积分10
2秒前
2秒前
2秒前
调皮初蓝完成签到,获得积分10
3秒前
灵巧宝川完成签到,获得积分10
3秒前
小萝卜完成签到,获得积分10
3秒前
3秒前
共享精神应助平淡的恋风采纳,获得10
3秒前
郜俊龙发布了新的文献求助10
4秒前
郑总完成签到 ,获得积分20
4秒前
ghostR完成签到,获得积分10
4秒前
榴莲发布了新的文献求助10
4秒前
xslj完成签到,获得积分10
4秒前
石破天惊完成签到,获得积分10
4秒前
魁梧的阑悦完成签到,获得积分10
5秒前
科研通AI2S应助juzi采纳,获得10
5秒前
5秒前
平平无奇小张完成签到 ,获得积分10
5秒前
zhangjx完成签到 ,获得积分10
6秒前
6秒前
调皮初蓝发布了新的文献求助10
6秒前
yuan完成签到,获得积分10
6秒前
花开半夏完成签到,获得积分10
6秒前
YILIA完成签到,获得积分10
6秒前
NexusExplorer应助123采纳,获得10
6秒前
6秒前
WSDSG完成签到,获得积分10
7秒前
没头脑完成签到,获得积分10
7秒前
CPS发布了新的文献求助10
7秒前
神奇的光子完成签到,获得积分10
7秒前
科研通AI2S应助sheila采纳,获得10
7秒前
8秒前
沉静的万天完成签到 ,获得积分10
8秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012