An Effective COVID-19 CT Image Denoising Method Based on a Deep Convolutional Neural Network

降噪 卷积神经网络 人工智能 计算机科学 噪音(视频) 模式识别(心理学) 深度学习 非本地手段 图像(数学) 图像去噪 计算机视觉
作者
Hanyue Liu,Chunsheng Zhang,Yurong Guo,Lin Qingming,Zhanjiang Lan,Mingyang Jiang,Jie Lian,Xueyan Chen,Xiaojing Fan
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:16 (4) 被引量:1
标识
DOI:10.2174/2666255816666220920150916
摘要

Background: Faced with the global threat posed by SARS-CoV-2 (COVID-19), lowdose computed tomography (LDCT), as the primary diagnostic tool, is often accompanied by high levels of noise. This can easily interfere with the radiologist's assessment. Convolutional neural networks (CNN), as a method of deep learning, have been shown to have excellent effects in image denoising. Objective: The objective of the study was to use modified convolutional neural network algorithm to train the denoising model. The purpose was to make the model extract the highlighted features of the lesion region better and ensure its effectiveness in removing noise from COVID-19 lung CT images, preserving more important detail information of the images and reducing the adverse effects of denoising. Methods: We propose a CNN-based deformable convolutional denoising neural network (DCDNet). By combining deformable convolution methods with residual learning on the basis of CNN structure, more image detail features are retained in CT image denoising. Result: According to the noise reduction evaluation index of PSNR, SSIM and RMSE, DCDNet shows excellent denoising performance for COVID-19 CT images. From the visual effect of denoising, DCDNet can effectively remove image noise and preserve more detailed features of lung lesions. Conclusion: The experimental results indicate that the DCDNet-trained model is more suitable for image denoising of COVID-19 than traditional image denoising algorithms under the same training set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木偶完成签到,获得积分10
刚刚
小猫完成签到 ,获得积分10
刚刚
huayi完成签到,获得积分10
2秒前
典雅胜发布了新的文献求助10
3秒前
姚怜南完成签到,获得积分10
3秒前
Norah完成签到,获得积分10
4秒前
4秒前
饱满的毛巾完成签到,获得积分10
5秒前
玖月完成签到 ,获得积分0
6秒前
6秒前
7秒前
潇潇完成签到,获得积分10
8秒前
pluto完成签到,获得积分0
8秒前
10秒前
支雨泽发布了新的文献求助10
11秒前
烟花应助TulIP采纳,获得10
12秒前
辛勤的小熊猫完成签到,获得积分10
12秒前
粥粥粥完成签到,获得积分20
13秒前
queer完成签到,获得积分10
13秒前
天行马完成签到,获得积分10
13秒前
juphen2发布了新的文献求助10
14秒前
芜湖起飞完成签到 ,获得积分10
15秒前
wang完成签到,获得积分10
16秒前
16秒前
zhangj696完成签到,获得积分10
17秒前
Xavier完成签到,获得积分10
18秒前
洁净的黑米完成签到,获得积分10
19秒前
圈圈应助科研通管家采纳,获得10
19秒前
xz应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
香蕉诗蕊应助科研通管家采纳,获得10
20秒前
20秒前
香蕉诗蕊应助科研通管家采纳,获得10
20秒前
smottom应助科研通管家采纳,获得10
20秒前
iVANPENNY应助科研通管家采纳,获得10
20秒前
老刀完成签到,获得积分10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
跳跃的迎荷完成签到 ,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806