出租车
捕食
霍普夫分叉
数学
控制理论(社会学)
中央歧管
平面(几何)
边界(拓扑)
捕食者
分叉
统计物理学
应用数学
数学分析
计算机科学
物理
几何学
生态学
非线性系统
生物
植物
控制(管理)
量子力学
人工智能
标识
DOI:10.1142/s0218127423501523
摘要
Time delays and taxi effects are important factors in the predator–prey interaction. This paper focuses on calculating the normal form on the center manifold near the Hopf bifurcation point for a general delayed diffusive predator–prey system with taxis under the Neumann boundary condition. A delayed diffusive Lotka–Volterra predator–prey model with prey-taxis is considered as an application. By numerical simulations, in the two-parameter plane, different types of spatial-temporal patterns are observed by varying delay or taxis.
科研通智能强力驱动
Strongly Powered by AbleSci AI