Semi-supervised Pathological Image Segmentation via Cross Distillation of Multiple Attentions

计算机科学 分割 人工智能 杠杆(统计) 注释 解码方法 编码器 管道(软件) 一致性(知识库) 机器学习 模式识别(心理学) 编码(集合论) 缩小 算法 集合(抽象数据类型) 程序设计语言 操作系统
作者
Lanfeng Zhong,Xiaofeng Liao,Shaoting Zhang,Guotai Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 570-579
标识
DOI:10.1007/978-3-031-43987-2_55
摘要

Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions (CDMA) to effectively leverage unlabeled images. Firstly, we propose a Multi-attention Tri-branch Network (MTNet) that consists of an encoder and a three-branch decoder, with each branch using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Secondly, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoder branches, allowing them to learn from each other’s soft labels to mitigate the negative impact of incorrect pseudo labels in training. Additionally, uncertainty minimization is applied to the average prediction of the three branches, which further regularizes predictions on unlabeled images and encourages inter-branch consistency. Our proposed CDMA was compared with eight state-of-the-art SSL methods on the public DigestPath dataset, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1009完成签到,获得积分20
刚刚
刚刚
领导范儿应助沈达采纳,获得10
1秒前
陈嘉良完成签到,获得积分10
1秒前
fff完成签到,获得积分10
1秒前
leclare发布了新的文献求助10
1秒前
lala完成签到,获得积分10
1秒前
3秒前
李健春完成签到,获得积分10
3秒前
nihao发布了新的文献求助10
3秒前
3秒前
啦啦啦发布了新的文献求助10
4秒前
4秒前
2231131发布了新的文献求助10
4秒前
4秒前
chenzy完成签到,获得积分10
4秒前
123完成签到,获得积分10
5秒前
6秒前
8秒前
9秒前
小葡萄发布了新的文献求助10
9秒前
Chloe完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
WXG发布了新的文献求助10
10秒前
cenghao应助调皮蛋采纳,获得10
11秒前
哈哈哈哈发布了新的文献求助10
11秒前
11秒前
zyt096发布了新的文献求助10
12秒前
大力盼易完成签到,获得积分10
13秒前
温暖芒果发布了新的文献求助10
13秒前
123发布了新的文献求助10
14秒前
ding应助七面东风采纳,获得10
14秒前
田様应助yyyf采纳,获得10
14秒前
carl发布了新的文献求助10
15秒前
cancan发布了新的文献求助10
16秒前
华生发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572125
求助须知:如何正确求助?哪些是违规求助? 4657321
关于积分的说明 14720115
捐赠科研通 4598123
什么是DOI,文献DOI怎么找? 2523566
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464416