Semi-supervised Pathological Image Segmentation via Cross Distillation of Multiple Attentions

计算机科学 分割 人工智能 杠杆(统计) 注释 解码方法 编码器 管道(软件) 一致性(知识库) 机器学习 模式识别(心理学) 编码(集合论) 缩小 算法 集合(抽象数据类型) 程序设计语言 操作系统
作者
Lanfeng Zhong,Xiaofeng Liao,Shaoting Zhang,Guotai Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 570-579
标识
DOI:10.1007/978-3-031-43987-2_55
摘要

Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions (CDMA) to effectively leverage unlabeled images. Firstly, we propose a Multi-attention Tri-branch Network (MTNet) that consists of an encoder and a three-branch decoder, with each branch using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Secondly, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoder branches, allowing them to learn from each other’s soft labels to mitigate the negative impact of incorrect pseudo labels in training. Additionally, uncertainty minimization is applied to the average prediction of the three branches, which further regularizes predictions on unlabeled images and encourages inter-branch consistency. Our proposed CDMA was compared with eight state-of-the-art SSL methods on the public DigestPath dataset, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助寒冷猫咪采纳,获得10
1秒前
1秒前
1秒前
苏姗姗发布了新的文献求助10
2秒前
zzsossos完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
陈陈陈发布了新的文献求助10
3秒前
星辰大海应助111采纳,获得10
4秒前
灵巧墨镜发布了新的文献求助10
5秒前
zzsossos发布了新的文献求助10
5秒前
不期而遇完成签到 ,获得积分20
5秒前
Suree发布了新的文献求助10
6秒前
jjjjchou发布了新的文献求助10
6秒前
愉快的自行车完成签到,获得积分10
6秒前
Liz1054发布了新的文献求助10
7秒前
7秒前
7秒前
YJH发布了新的文献求助30
8秒前
9秒前
10秒前
11秒前
归尘发布了新的文献求助10
11秒前
缓慢的友灵完成签到,获得积分20
13秒前
长安遗梦完成签到,获得积分10
13秒前
海岸完成签到,获得积分20
13秒前
13秒前
思源应助沉钧采纳,获得10
15秒前
bkagyin应助jayus采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
17秒前
dyy123发布了新的文献求助10
17秒前
llllll完成签到,获得积分10
17秒前
熊佳璇完成签到,获得积分10
17秒前
aiya完成签到,获得积分10
18秒前
科研顺利完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513