Semi-supervised Pathological Image Segmentation via Cross Distillation of Multiple Attentions

计算机科学 分割 人工智能 杠杆(统计) 注释 解码方法 编码器 管道(软件) 一致性(知识库) 机器学习 模式识别(心理学) 编码(集合论) 缩小 算法 集合(抽象数据类型) 程序设计语言 操作系统
作者
Lanfeng Zhong,Xiaofeng Liao,Shaoting Zhang,Guotai Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 570-579
标识
DOI:10.1007/978-3-031-43987-2_55
摘要

Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions (CDMA) to effectively leverage unlabeled images. Firstly, we propose a Multi-attention Tri-branch Network (MTNet) that consists of an encoder and a three-branch decoder, with each branch using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Secondly, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoder branches, allowing them to learn from each other’s soft labels to mitigate the negative impact of incorrect pseudo labels in training. Additionally, uncertainty minimization is applied to the average prediction of the three branches, which further regularizes predictions on unlabeled images and encourages inter-branch consistency. Our proposed CDMA was compared with eight state-of-the-art SSL methods on the public DigestPath dataset, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刻苦的安白完成签到,获得积分10
1秒前
1秒前
cl发布了新的文献求助30
1秒前
李健应助顽强的娃娃采纳,获得10
1秒前
1秒前
mmmooo完成签到,获得积分10
2秒前
2秒前
2秒前
冬灵完成签到,获得积分10
2秒前
Qingchen发布了新的文献求助10
2秒前
3秒前
seven发布了新的文献求助10
3秒前
3秒前
4秒前
甜美孤云发布了新的文献求助10
4秒前
laj完成签到,获得积分10
5秒前
冬灵发布了新的文献求助10
5秒前
江林发布了新的文献求助10
5秒前
5秒前
LIn发布了新的文献求助10
6秒前
鱼鱼鱼发布了新的文献求助10
6秒前
6秒前
KKLD发布了新的文献求助10
7秒前
kfuiewfowe发布了新的文献求助30
7秒前
7秒前
跳跳虎完成签到 ,获得积分10
8秒前
单薄夏山关注了科研通微信公众号
9秒前
9秒前
罗C发布了新的文献求助10
9秒前
魏欣雨发布了新的文献求助10
9秒前
9秒前
乔木木完成签到,获得积分10
11秒前
乐乐应助甜美孤云采纳,获得10
11秒前
11秒前
orixero应助Sky采纳,获得10
12秒前
12秒前
传奇3应助purdrea采纳,获得10
13秒前
LIn完成签到,获得积分10
13秒前
豆kl发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485