Semi-supervised Pathological Image Segmentation via Cross Distillation of Multiple Attentions

计算机科学 分割 人工智能 杠杆(统计) 注释 解码方法 编码器 管道(软件) 一致性(知识库) 机器学习 模式识别(心理学) 编码(集合论) 缩小 算法 集合(抽象数据类型) 程序设计语言 操作系统
作者
Lanfeng Zhong,Xiaofeng Liao,Shaoting Zhang,Guotai Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 570-579
标识
DOI:10.1007/978-3-031-43987-2_55
摘要

Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions (CDMA) to effectively leverage unlabeled images. Firstly, we propose a Multi-attention Tri-branch Network (MTNet) that consists of an encoder and a three-branch decoder, with each branch using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Secondly, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoder branches, allowing them to learn from each other’s soft labels to mitigate the negative impact of incorrect pseudo labels in training. Additionally, uncertainty minimization is applied to the average prediction of the three branches, which further regularizes predictions on unlabeled images and encourages inter-branch consistency. Our proposed CDMA was compared with eight state-of-the-art SSL methods on the public DigestPath dataset, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平凡之路发布了新的文献求助10
刚刚
1101592875应助哈哈哈采纳,获得10
1秒前
天天快乐应助哈哈哈采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
共享精神应助butterflycat采纳,获得10
1秒前
wang完成签到,获得积分10
1秒前
SS_完成签到,获得积分20
1秒前
李卓辰发布了新的文献求助10
1秒前
1秒前
冰姗完成签到,获得积分10
1秒前
王艳完成签到,获得积分10
2秒前
2秒前
spring发布了新的文献求助10
2秒前
2秒前
ymj完成签到,获得积分10
3秒前
3秒前
3秒前
黄云发布了新的文献求助10
3秒前
3秒前
LBB发布了新的文献求助10
4秒前
4秒前
younghippo发布了新的文献求助10
4秒前
刘小文完成签到 ,获得积分10
5秒前
5秒前
哈比人linling完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
不如无言完成签到,获得积分10
6秒前
林风发布了新的文献求助30
7秒前
冉冉完成签到,获得积分10
7秒前
在水一方应助沉静的歌曲采纳,获得30
7秒前
十三发布了新的文献求助10
8秒前
wanci应助平凡之路采纳,获得10
8秒前
吴智健发布了新的文献求助10
8秒前
ahbee发布了新的文献求助10
9秒前
425711204完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502