Fundus Image-Label Pairs Synthesis and Retinopathy Screening via GANs With Class-Imbalanced Semi-Supervised Learning

计算机科学 人工智能 眼底(子宫) 计算机视觉 图像(数学) 班级(哲学) 模式识别(心理学) 视网膜病变 验光服务 内分泌学 糖尿病 医学 眼科
作者
Yingpeng Xie,Qiwei Wan,Hai Xie,Yanwu Xu,Tianfu Wang,Shuqiang Wang,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2714-2725 被引量:6
标识
DOI:10.1109/tmi.2023.3263216
摘要

Retinopathy is the primary cause of irreversible yet preventable blindness. Numerous deep-learning algorithms have been developed for automatic retinal fundus image analysis. However, existing methods are usually data-driven, which rarely consider the costs associated with fundus image collection and annotation, along with the class-imbalanced distribution that arises from the relative scarcity of disease-positive individuals in the population. Semi-supervised learning on class-imbalanced data, despite a realistic problem, has been relatively little studied. To fill the existing research gap, we explore generative adversarial networks (GANs) as a potential answer to that problem. Specifically, we present a novel framework, named CISSL-GANs, for class-imbalanced semi-supervised learning (CISSL) by leveraging a dynamic class-rebalancing (DCR) sampler, which exploits the property that the classifier trained on class-imbalanced data produces high-precision pseudo-labels on minority classes to leverage the bias inherent in pseudo-labels. Also, given the well-known difficulty of training GANs on complex data, we investigate three practical techniques to improve the training dynamics without altering the global equilibrium. Experimental results demonstrate that our CISSL-GANs are capable of simultaneously improving fundus image class-conditional generation and classification performance under a typical label insufficient and imbalanced scenario. Our code is available at: https://github.com/Xyporz/CISSL-GANs .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻雁凡发布了新的文献求助10
刚刚
GreenDuane完成签到 ,获得积分0
刚刚
2秒前
3秒前
hahada发布了新的文献求助10
6秒前
明钟达发布了新的文献求助10
7秒前
7秒前
9秒前
Kay发布了新的文献求助10
11秒前
Junlei完成签到,获得积分10
12秒前
Soph发布了新的文献求助10
14秒前
always完成签到 ,获得积分10
14秒前
共享精神应助123采纳,获得30
18秒前
FAST完成签到,获得积分10
27秒前
28秒前
科研通AI2S应助善良青筠采纳,获得10
28秒前
小二郎应助难过的笑天采纳,获得10
28秒前
hahada完成签到,获得积分10
30秒前
程院发布了新的文献求助10
30秒前
Tuesday完成签到 ,获得积分10
39秒前
42秒前
肖肖肖完成签到 ,获得积分10
45秒前
善良青筠发布了新的文献求助10
46秒前
科研通AI2S应助aaa采纳,获得10
46秒前
希望天下0贩的0应助una采纳,获得10
57秒前
59秒前
在我梦里绕完成签到,获得积分10
1分钟前
1分钟前
我是老大应助LeiZha采纳,获得10
1分钟前
1分钟前
abc完成签到 ,获得积分10
1分钟前
Orange应助程院采纳,获得10
1分钟前
难过的笑天完成签到,获得积分10
1分钟前
李健应助聪明大米采纳,获得10
1分钟前
小苦瓜发布了新的文献求助10
1分钟前
afterall完成签到 ,获得积分10
1分钟前
1分钟前
zm发布了新的文献求助10
1分钟前
1分钟前
打打应助cc采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3370520
求助须知:如何正确求助?哪些是违规求助? 2989097
关于积分的说明 8733739
捐赠科研通 2672039
什么是DOI,文献DOI怎么找? 1463819
科研通“疑难数据库(出版商)”最低求助积分说明 677315
邀请新用户注册赠送积分活动 668542