Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation

波形 光容积图 血压 均方误差 信号(编程语言) 卷积神经网络 计算机科学 卡尔曼滤波器 数学 算法 医学 人工智能 滤波器(信号处理) 统计 内科学 电信 计算机视觉 程序设计语言 雷达
作者
Yongan Zhou,Zhi Tan,Yuhong Liu,Haibo Cheng
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:44 (7): 075007-075007 被引量:1
标识
DOI:10.1088/1361-6579/ace414
摘要

Abstract Objective . The quality of the arterial blood pressure (ABP) waveform is crucial for predicting the value of blood pressure. The ABP waveform is predicted through experiments, and then Systolic blood pressure (SBP), Diastolic blood pressure, (DBP), and Mean arterial pressure (MAP) information are estimated from the ABP waveform. Approach . To ensure the quality of the predicted ABP waveform, this paper carefully designs the network structure, input signal, loss function, and structural parameters. A fully convolutional neural network (CNN) MultiResUNet3+ is used as the core architecture of ABP-MultiNet3+. In addition to performing Kalman filtering on the original photoplethysmogram (PPG) signal, its first-order derivative and second-order derivative signals are used as ABP-MultiNet3+ enter. The model’s loss function uses a combination of mean absolute error (MAE) and means square error (MSE) loss to ensure that the predicted ABP waveform matches the reference waveform. Main results . The proposed ABP-MultiNet3+ model was tested on the public MIMIC II databases, MAE of MAP, DBP, and SBP was 1.88 mmHg, 3.11 mmHg, and 4.45 mmHg, respectively, indicating a small model error. It experiment fully meets the standards of the AAMI standard and obtains level A in the DBP and MAP prediction standard test under the BHS standard. For SBP prediction, it obtains level B in the BHS standard test. Although it does not reach level A, it has a certain improvement compared with the existing methods. Significance . The results show that this algorithm can achieve sleeveless blood pressure estimation, which may enable mobile medical devices to continuously monitor blood pressure and greatly reduce the harm caused by Cardiovascular disease (CVD).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮的老城完成签到 ,获得积分10
1秒前
好好好好好完成签到,获得积分10
1秒前
我爱科研完成签到,获得积分10
2秒前
奥丁蒂法完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
小李子发布了新的文献求助10
4秒前
小田发布了新的文献求助20
5秒前
6秒前
6秒前
灵巧映安发布了新的文献求助10
7秒前
7秒前
超级小飞侠完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
踏实威完成签到,获得积分10
8秒前
SciGPT应助zzaxx123采纳,获得10
9秒前
弄香发布了新的文献求助10
11秒前
欣慰的白羊完成签到,获得积分10
12秒前
fanhongpeng完成签到 ,获得积分10
12秒前
12秒前
13秒前
ermiao发布了新的文献求助10
13秒前
小李子完成签到,获得积分10
15秒前
JamesPei应助曙丽盼采纳,获得10
16秒前
无极微光应助隐形的若灵采纳,获得20
16秒前
打打应助种花家的狗狗采纳,获得10
16秒前
善学以致用应助TingtingGZ采纳,获得10
16秒前
Stroeve完成签到,获得积分10
17秒前
lzylzy完成签到,获得积分10
17秒前
18秒前
18秒前
zh完成签到,获得积分10
20秒前
lzylzy发布了新的文献求助10
21秒前
22秒前
李顺利给李顺利的求助进行了留言
23秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212