Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation

波形 光容积图 血压 均方误差 信号(编程语言) 卷积神经网络 计算机科学 卡尔曼滤波器 数学 算法 医学 人工智能 滤波器(信号处理) 统计 内科学 电信 计算机视觉 程序设计语言 雷达
作者
Yongan Zhou,Zhi Tan,Yuhong Liu,Haibo Cheng
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:44 (7): 075007-075007 被引量:1
标识
DOI:10.1088/1361-6579/ace414
摘要

Abstract Objective . The quality of the arterial blood pressure (ABP) waveform is crucial for predicting the value of blood pressure. The ABP waveform is predicted through experiments, and then Systolic blood pressure (SBP), Diastolic blood pressure, (DBP), and Mean arterial pressure (MAP) information are estimated from the ABP waveform. Approach . To ensure the quality of the predicted ABP waveform, this paper carefully designs the network structure, input signal, loss function, and structural parameters. A fully convolutional neural network (CNN) MultiResUNet3+ is used as the core architecture of ABP-MultiNet3+. In addition to performing Kalman filtering on the original photoplethysmogram (PPG) signal, its first-order derivative and second-order derivative signals are used as ABP-MultiNet3+ enter. The model’s loss function uses a combination of mean absolute error (MAE) and means square error (MSE) loss to ensure that the predicted ABP waveform matches the reference waveform. Main results . The proposed ABP-MultiNet3+ model was tested on the public MIMIC II databases, MAE of MAP, DBP, and SBP was 1.88 mmHg, 3.11 mmHg, and 4.45 mmHg, respectively, indicating a small model error. It experiment fully meets the standards of the AAMI standard and obtains level A in the DBP and MAP prediction standard test under the BHS standard. For SBP prediction, it obtains level B in the BHS standard test. Although it does not reach level A, it has a certain improvement compared with the existing methods. Significance . The results show that this algorithm can achieve sleeveless blood pressure estimation, which may enable mobile medical devices to continuously monitor blood pressure and greatly reduce the harm caused by Cardiovascular disease (CVD).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
眼睛大的笑阳完成签到,获得积分20
2秒前
Hello应助积极发卡采纳,获得10
2秒前
2秒前
4秒前
闹海完成签到,获得积分10
4秒前
5秒前
nature2号完成签到 ,获得积分10
6秒前
Petrichor完成签到,获得积分10
6秒前
卷芽大王完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
万能图书馆应助xmy采纳,获得10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
729完成签到,获得积分10
10秒前
灵巧冰露发布了新的文献求助30
10秒前
lin完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
13秒前
陈陈陈发布了新的文献求助10
13秒前
14秒前
xiaoliu发布了新的文献求助10
14秒前
16秒前
16秒前
piggy发布了新的文献求助10
17秒前
17秒前
张北北完成签到,获得积分10
17秒前
liying发布了新的文献求助30
17秒前
昂莫达完成签到,获得积分10
17秒前
豆子发布了新的文献求助10
17秒前
LucyLi发布了新的文献求助10
18秒前
tcf发布了新的文献求助10
18秒前
jmy发布了新的文献求助30
18秒前
莱德完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618686
求助须知:如何正确求助?哪些是违规求助? 4703697
关于积分的说明 14923247
捐赠科研通 4758321
什么是DOI,文献DOI怎么找? 2550231
邀请新用户注册赠送积分活动 1513010
关于科研通互助平台的介绍 1474379