Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation

波形 光容积图 血压 均方误差 信号(编程语言) 卷积神经网络 计算机科学 卡尔曼滤波器 数学 算法 医学 人工智能 滤波器(信号处理) 统计 内科学 电信 计算机视觉 程序设计语言 雷达
作者
Yongan Zhou,Zhi Tan,Yuhong Liu,Haibo Cheng
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:44 (7): 075007-075007 被引量:1
标识
DOI:10.1088/1361-6579/ace414
摘要

Abstract Objective . The quality of the arterial blood pressure (ABP) waveform is crucial for predicting the value of blood pressure. The ABP waveform is predicted through experiments, and then Systolic blood pressure (SBP), Diastolic blood pressure, (DBP), and Mean arterial pressure (MAP) information are estimated from the ABP waveform. Approach . To ensure the quality of the predicted ABP waveform, this paper carefully designs the network structure, input signal, loss function, and structural parameters. A fully convolutional neural network (CNN) MultiResUNet3+ is used as the core architecture of ABP-MultiNet3+. In addition to performing Kalman filtering on the original photoplethysmogram (PPG) signal, its first-order derivative and second-order derivative signals are used as ABP-MultiNet3+ enter. The model’s loss function uses a combination of mean absolute error (MAE) and means square error (MSE) loss to ensure that the predicted ABP waveform matches the reference waveform. Main results . The proposed ABP-MultiNet3+ model was tested on the public MIMIC II databases, MAE of MAP, DBP, and SBP was 1.88 mmHg, 3.11 mmHg, and 4.45 mmHg, respectively, indicating a small model error. It experiment fully meets the standards of the AAMI standard and obtains level A in the DBP and MAP prediction standard test under the BHS standard. For SBP prediction, it obtains level B in the BHS standard test. Although it does not reach level A, it has a certain improvement compared with the existing methods. Significance . The results show that this algorithm can achieve sleeveless blood pressure estimation, which may enable mobile medical devices to continuously monitor blood pressure and greatly reduce the harm caused by Cardiovascular disease (CVD).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乘风破浪发布了新的文献求助10
1秒前
CHUANSHUIRUYUN完成签到,获得积分10
1秒前
3秒前
凯少完成签到 ,获得积分10
3秒前
zuo完成签到,获得积分10
4秒前
完美世界应助DXL采纳,获得10
5秒前
6秒前
dzdzzzzzzzzzz发布了新的文献求助10
7秒前
Stella应助隐形的凡阳采纳,获得10
8秒前
浮游应助科研大王采纳,获得10
8秒前
维奈克拉应助粒粒采纳,获得20
8秒前
9秒前
10秒前
拉长的紫安完成签到,获得积分10
10秒前
cfyoung完成签到,获得积分10
10秒前
GuangqinMa发布了新的文献求助10
11秒前
12秒前
niNe3YUE应助会化蝶采纳,获得10
12秒前
橙子雨发布了新的文献求助10
14秒前
16秒前
16秒前
科研通AI6应助冷酷严青采纳,获得10
16秒前
16秒前
dzdzzzzzzzzzz完成签到,获得积分10
18秒前
加油少年发布了新的文献求助10
20秒前
20秒前
21秒前
Hello应助缓慢含烟采纳,获得10
21秒前
浮游应助宇文天思采纳,获得10
23秒前
研友_LweedZ发布了新的文献求助10
24秒前
Jasper应助学术混子采纳,获得10
24秒前
QQW完成签到 ,获得积分10
25秒前
25秒前
好的好的发布了新的文献求助10
25秒前
26秒前
深情安青应助dzdzzzzzzzzzz采纳,获得10
27秒前
无花果应助粒粒采纳,获得20
27秒前
zhouyunan完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454