Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation

波形 光容积图 血压 均方误差 信号(编程语言) 卷积神经网络 计算机科学 卡尔曼滤波器 数学 算法 医学 人工智能 滤波器(信号处理) 统计 内科学 电信 计算机视觉 程序设计语言 雷达
作者
Yongan Zhou,Zhi Tan,Yuhong Liu,Haibo Cheng
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:44 (7): 075007-075007 被引量:1
标识
DOI:10.1088/1361-6579/ace414
摘要

Abstract Objective . The quality of the arterial blood pressure (ABP) waveform is crucial for predicting the value of blood pressure. The ABP waveform is predicted through experiments, and then Systolic blood pressure (SBP), Diastolic blood pressure, (DBP), and Mean arterial pressure (MAP) information are estimated from the ABP waveform. Approach . To ensure the quality of the predicted ABP waveform, this paper carefully designs the network structure, input signal, loss function, and structural parameters. A fully convolutional neural network (CNN) MultiResUNet3+ is used as the core architecture of ABP-MultiNet3+. In addition to performing Kalman filtering on the original photoplethysmogram (PPG) signal, its first-order derivative and second-order derivative signals are used as ABP-MultiNet3+ enter. The model’s loss function uses a combination of mean absolute error (MAE) and means square error (MSE) loss to ensure that the predicted ABP waveform matches the reference waveform. Main results . The proposed ABP-MultiNet3+ model was tested on the public MIMIC II databases, MAE of MAP, DBP, and SBP was 1.88 mmHg, 3.11 mmHg, and 4.45 mmHg, respectively, indicating a small model error. It experiment fully meets the standards of the AAMI standard and obtains level A in the DBP and MAP prediction standard test under the BHS standard. For SBP prediction, it obtains level B in the BHS standard test. Although it does not reach level A, it has a certain improvement compared with the existing methods. Significance . The results show that this algorithm can achieve sleeveless blood pressure estimation, which may enable mobile medical devices to continuously monitor blood pressure and greatly reduce the harm caused by Cardiovascular disease (CVD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寄托完成签到 ,获得积分10
刚刚
雾色笼晓树苍完成签到,获得积分10
1秒前
万能图书馆应助天真听筠采纳,获得10
1秒前
雪白的千雁完成签到 ,获得积分10
1秒前
2秒前
2秒前
冬枣枣完成签到,获得积分10
2秒前
啄木鸟完成签到 ,获得积分10
2秒前
Hai发布了新的文献求助10
2秒前
喵喵666完成签到,获得积分10
2秒前
江阳宏发布了新的文献求助10
2秒前
研友_8Y26PL完成签到,获得积分10
3秒前
3秒前
安花完成签到,获得积分10
3秒前
3秒前
mmy完成签到,获得积分10
3秒前
活力立诚完成签到,获得积分10
4秒前
wuchang完成签到,获得积分10
4秒前
4秒前
4秒前
寒而不冰发布了新的文献求助10
4秒前
2032jia发布了新的文献求助10
4秒前
dayaya完成签到,获得积分10
4秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
SAKURA应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
cady完成签到,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
让我再眯一会儿完成签到 ,获得积分10
6秒前
orixero应助科研通管家采纳,获得30
6秒前
江愉应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477103
求助须知:如何正确求助?哪些是违规求助? 4578993
关于积分的说明 14366029
捐赠科研通 4507069
什么是DOI,文献DOI怎么找? 2469632
邀请新用户注册赠送积分活动 1456830
关于科研通互助平台的介绍 1430868