已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Prognosis and Immunotherapy Prediction Model of Ovarian Serous Cystadenocarcinoma Patient was Constructed Based on Cuproptosis-Related LncRNA

医学 囊腺癌 浆液性囊腺癌 免疫疗法 内科学 浆液性液体 肿瘤科 粘液性囊腺癌 卵巢癌 卵巢 癌症
作者
Junliang Guo,Muchuan Zhou,Jinhong Li,Yihong Yang,Yang Hu,Tian Tang,Yi Quan
出处
期刊:Tohoku Journal of Experimental Medicine [Tohoku University Medical Press]
卷期号:262 (2): 63-74 被引量:1
标识
DOI:10.1620/tjem.2023.j056
摘要

Cuproptosis can serve as potential prognostic predictors in patients with cancer. However, the role of this relationship in ovarian serous cystadenocarcinoma (OV) remains unclear. 376 OV tumor samples were obtained from the Cancer Genome Atlas (TCGA) database, and long non-coding RNAs (lncRNAs) related to cuproptosis were obtained through correlation analysis. The risk assessment model was further constructed by univariate Cox regression analysis and LASSO Cox regression. Bioinformatics was used to analyze the regulatory effect of relevant risk assessment models on tumor mutational burden (TMB) and immune microenvironment. We obtained 5 lncRNAs (AC025287.2, AC092718.4, AC112721.2, LINC00996, and LINC01639) and incorporated them into the Cox proportional hazards model. Kaplan-Meier (KM) curve analysis of the prognosis found that the high-risk group was associated with a poorer prognosis. The receiver operating characteristic (ROC) curve showed stronger predictive power compared to other clinicopathological features. Immune infiltration analysis showed that high-risk scores were inversely correlated with CD8+ T cells, CD4+ T cells, macrophages, NK cells, and B cells. Functional enrichment analysis found that they may act via the extracellular matrix (ECM)-interacting proteins and other pathways. We successfully constructed a reliable cuproptosis-related lncRNA model for the prognosis of OV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速的月光完成签到 ,获得积分10
2秒前
Rita发布了新的文献求助10
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
4秒前
5秒前
huenguyenvan完成签到,获得积分10
6秒前
Zooey旎旎完成签到,获得积分10
8秒前
梦比优斯发布了新的文献求助20
8秒前
8秒前
科目三应助bioinformation采纳,获得10
8秒前
科研通AI2S应助三金采纳,获得20
9秒前
9秒前
白千筹完成签到 ,获得积分10
9秒前
十七。完成签到,获得积分10
10秒前
贵哥完成签到,获得积分10
10秒前
10秒前
小二郎应助默默大地采纳,获得50
11秒前
12秒前
嘻嘻梦发布了新的文献求助10
12秒前
小秦完成签到,获得积分10
13秒前
只如初完成签到,获得积分10
14秒前
二行完成签到 ,获得积分10
14秒前
zrm完成签到,获得积分10
15秒前
小糯完成签到 ,获得积分10
15秒前
黄毛虎完成签到 ,获得积分10
16秒前
sunny完成签到 ,获得积分10
17秒前
wangzhao完成签到,获得积分10
17秒前
17秒前
辛谷方松永旭完成签到 ,获得积分10
19秒前
大力黑米完成签到 ,获得积分10
19秒前
19秒前
烟花应助知性的梦松采纳,获得10
19秒前
WEIFENG完成签到,获得积分10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544287
求助须知:如何正确求助?哪些是违规求助? 3121475
关于积分的说明 9347475
捐赠科研通 2819748
什么是DOI,文献DOI怎么找? 1550401
邀请新用户注册赠送积分活动 722525
科研通“疑难数据库(出版商)”最低求助积分说明 713265