Improved algorithm for pedestrian detection of lane line based on YOLOv5s model

增采样 行人检测 计算机科学 人工智能 行人 目标检测 计算机视觉 算法 任务(项目管理) 模式识别(心理学) 图像(数学) 工程类 运输工程 系统工程
作者
Guoxin Shen,Xuerong Li,Wei Yi
标识
DOI:10.1109/iaeac54830.2022.9930101
摘要

Aiming at the problem that YOLOv5 has a high missed detection rate in the task of pedestrian detection in complex scenes, the ECA-YOLOv5 pedestrian detection algorithm is proposed. Aiming at the problems of high missed detection rate and complex scene in the complex crowded pedestrian detection task, the original BottleneckCSP module is replaced with the C3TR module with TransformerBlock, which has better performance in the detection of high-density occluded objects in the case of pedestrian detection. Aiming at the problem of excessive parameters such as redundant expansion of model training calculation, a lightweight general upsampling operator CARAFE is introduced. Compared with other upsampling methods, it can not only achieve better performance in multi-scene tasks, but also greatly reduce The parameter calculation amount is reduced, the detection speed is improved while the detection accuracy is preserved. The self-designed efficientCoordAtt high-efficiency attention mechanism module is used to enhance the receptive field and the model's ability to accurately locate the target, improve the detection accuracy in various complex scenes, and strengthen the model's ability to capture local information. The experimental results show that the improved ECA-YOLOv5s algorithm can effectively improve the mAP of pedestrian detection while maintaining the high real-time performance of the original algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逐风给逐风的求助进行了留言
1秒前
科研通AI5应助灌饼采纳,获得30
1秒前
Owen应助Zzzzzzzzzzz采纳,获得10
2秒前
3秒前
4秒前
巫马秋寒应助笑点低可乐采纳,获得10
4秒前
xuex1完成签到,获得积分10
4秒前
情怀应助阳光的雁山采纳,获得10
6秒前
斯文败类应助jy采纳,获得10
6秒前
6秒前
日月轮回发布了新的文献求助10
7秒前
36456657应助木香采纳,获得10
8秒前
无花果应助ns采纳,获得30
8秒前
刘铭晨完成签到,获得积分10
8秒前
9秒前
YY发布了新的文献求助10
9秒前
Rrr发布了新的文献求助10
10秒前
学术蠕虫发布了新的文献求助10
10秒前
10秒前
miumiuka完成签到,获得积分10
11秒前
个性的薯片应助lyt采纳,获得20
13秒前
sweetbearm应助寒涛先生采纳,获得10
14秒前
wanci应助YY采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
HC完成签到 ,获得积分10
18秒前
姚姚的赵赵完成签到,获得积分10
18秒前
JamesPei应助大豪子采纳,获得30
19秒前
jy发布了新的文献求助10
19秒前
19秒前
陆靖易发布了新的文献求助10
19秒前
LQW完成签到,获得积分20
20秒前
21秒前
plant完成签到,获得积分10
21秒前
lyt完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808