Improved algorithm for pedestrian detection of lane line based on YOLOv5s model

增采样 行人检测 计算机科学 人工智能 行人 目标检测 计算机视觉 算法 任务(项目管理) 模式识别(心理学) 图像(数学) 工程类 运输工程 系统工程
作者
Guoxin Shen,Xuerong Li,Wei Yi
标识
DOI:10.1109/iaeac54830.2022.9930101
摘要

Aiming at the problem that YOLOv5 has a high missed detection rate in the task of pedestrian detection in complex scenes, the ECA-YOLOv5 pedestrian detection algorithm is proposed. Aiming at the problems of high missed detection rate and complex scene in the complex crowded pedestrian detection task, the original BottleneckCSP module is replaced with the C3TR module with TransformerBlock, which has better performance in the detection of high-density occluded objects in the case of pedestrian detection. Aiming at the problem of excessive parameters such as redundant expansion of model training calculation, a lightweight general upsampling operator CARAFE is introduced. Compared with other upsampling methods, it can not only achieve better performance in multi-scene tasks, but also greatly reduce The parameter calculation amount is reduced, the detection speed is improved while the detection accuracy is preserved. The self-designed efficientCoordAtt high-efficiency attention mechanism module is used to enhance the receptive field and the model's ability to accurately locate the target, improve the detection accuracy in various complex scenes, and strengthen the model's ability to capture local information. The experimental results show that the improved ECA-YOLOv5s algorithm can effectively improve the mAP of pedestrian detection while maintaining the high real-time performance of the original algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉树林风流倜傥完成签到,获得积分10
刚刚
1秒前
1秒前
mhl11应助hh0采纳,获得10
1秒前
3秒前
脑洞疼应助某某某采纳,获得10
4秒前
5秒前
单薄惜文发布了新的文献求助10
7秒前
柏特瑞完成签到,获得积分10
7秒前
8秒前
Ann发布了新的文献求助10
8秒前
9秒前
不知名的呆毛完成签到 ,获得积分10
9秒前
左丘孤容完成签到,获得积分10
9秒前
刘子子应助ningning采纳,获得10
10秒前
10秒前
11秒前
lemon完成签到,获得积分10
11秒前
12秒前
华仔应助柚子采纳,获得10
12秒前
13秒前
可爱的函函应助文艺雪糕采纳,获得10
13秒前
陈德明的命也是命完成签到,获得积分10
13秒前
13秒前
lemon发布了新的文献求助10
14秒前
14秒前
良辰应助小飞鱼采纳,获得10
14秒前
xyyyy发布了新的文献求助10
15秒前
cc发布了新的文献求助10
15秒前
烟花应助玉树林风流倜傥采纳,获得10
16秒前
WWW发布了新的文献求助10
16秒前
张狗蛋完成签到,获得积分20
17秒前
燕熙发布了新的文献求助10
17秒前
17秒前
18秒前
kawa发布了新的文献求助10
18秒前
隐形曼青应助务实的依秋采纳,获得10
19秒前
19秒前
欢喜从霜完成签到,获得积分10
19秒前
20秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263951
求助须知:如何正确求助?哪些是违规求助? 2904238
关于积分的说明 8328949
捐赠科研通 2574374
什么是DOI,文献DOI怎么找? 1399073
科研通“疑难数据库(出版商)”最低求助积分说明 654403
邀请新用户注册赠送积分活动 633040