Improved algorithm for pedestrian detection of lane line based on YOLOv5s model

增采样 行人检测 计算机科学 人工智能 行人 目标检测 计算机视觉 算法 任务(项目管理) 模式识别(心理学) 图像(数学) 工程类 运输工程 系统工程
作者
Guoxin Shen,Xuerong Li,Wei Yi
标识
DOI:10.1109/iaeac54830.2022.9930101
摘要

Aiming at the problem that YOLOv5 has a high missed detection rate in the task of pedestrian detection in complex scenes, the ECA-YOLOv5 pedestrian detection algorithm is proposed. Aiming at the problems of high missed detection rate and complex scene in the complex crowded pedestrian detection task, the original BottleneckCSP module is replaced with the C3TR module with TransformerBlock, which has better performance in the detection of high-density occluded objects in the case of pedestrian detection. Aiming at the problem of excessive parameters such as redundant expansion of model training calculation, a lightweight general upsampling operator CARAFE is introduced. Compared with other upsampling methods, it can not only achieve better performance in multi-scene tasks, but also greatly reduce The parameter calculation amount is reduced, the detection speed is improved while the detection accuracy is preserved. The self-designed efficientCoordAtt high-efficiency attention mechanism module is used to enhance the receptive field and the model's ability to accurately locate the target, improve the detection accuracy in various complex scenes, and strengthen the model's ability to capture local information. The experimental results show that the improved ECA-YOLOv5s algorithm can effectively improve the mAP of pedestrian detection while maintaining the high real-time performance of the original algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助文天采纳,获得10
刚刚
gt发布了新的文献求助10
刚刚
1秒前
柯一一应助王雯雯采纳,获得10
1秒前
1秒前
歪比巴卜完成签到,获得积分10
2秒前
研友_n0kW5L发布了新的文献求助10
2秒前
852应助张利双采纳,获得10
4秒前
ysy完成签到 ,获得积分10
5秒前
小小样发布了新的文献求助10
7秒前
cjz完成签到,获得积分20
7秒前
Hong1978发布了新的文献求助10
8秒前
所所应助orange采纳,获得10
9秒前
奇点临近完成签到 ,获得积分10
10秒前
星辰大海应助gt采纳,获得10
12秒前
满意的晓啸完成签到,获得积分10
13秒前
朴实子骞完成签到 ,获得积分10
13秒前
充电宝应助害羞的灵松采纳,获得10
14秒前
15秒前
17秒前
小蘑菇应助Jiaowen采纳,获得10
18秒前
syp发布了新的文献求助30
19秒前
阔达的凡发布了新的文献求助10
20秒前
33发布了新的文献求助10
23秒前
23秒前
万能图书馆应助研友_89jr6L采纳,获得10
23秒前
念姬发布了新的文献求助10
24秒前
33完成签到,获得积分10
28秒前
28秒前
科研通AI2S应助邢文瑞采纳,获得10
29秒前
32秒前
32秒前
吞吞完成签到 ,获得积分10
34秒前
syp完成签到,获得积分10
35秒前
小蒋完成签到 ,获得积分10
35秒前
35秒前
orange发布了新的文献求助10
36秒前
Jiaowen发布了新的文献求助10
36秒前
激动的项链完成签到,获得积分20
36秒前
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962917
求助须知:如何正确求助?哪些是违规求助? 3508861
关于积分的说明 11143755
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791689
邀请新用户注册赠送积分活动 873065
科研通“疑难数据库(出版商)”最低求助积分说明 803579