已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Occluded prohibited object detection in X-ray images with global Context-aware Multi-Scale feature Aggregation

计算机科学 人工智能 卷积神经网络 背景(考古学) 特征(语言学) 模式识别(心理学) 水准点(测量) 目标检测 对象(语法) 特征提取 计算机视觉 图层(电子) 比例(比率) 可扩展性 数据库 语言学 哲学 地理 古生物学 化学 物理 大地测量学 有机化学 量子力学 生物
作者
Chunjie Ma,Zhuo Li,Jiafeng Li,Yutong Zhang,Jing Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:519: 1-16 被引量:25
标识
DOI:10.1016/j.neucom.2022.11.034
摘要

Prohibited Object Detection (POD) in X-ray images plays an important role in protecting public safety. Automatic and accurate POD is required to relieve the working pressure of security inspectors. However, the existing methods cannot obtain a satisfactory detection accuracy, and especially, the problem of object occlusion also has not been solved well. Therefore, in this paper, according to the specific characteristics of X-ray images as well as low-level and high-level features of Convolutional Neural Network (CNN), different feature enhancement strategies have been elaborately designed for occluded POD. First, a learnable Gabor convolutional layer is designed and embedded into the low layer of the network to enhance the network's capability to capture the edge and contour information of object. A Spatial Attention (SA) mechanism is then designed to weight the output features of the Gabor convolutional layer to enhance the spatial structure information of object and suppress the background noises simultaneously. For the high-level features, Global Context Feature Extraction (GCFE) module is proposed to extract multi-scale global contextual information of object. And, a Dual Scale Feature Aggregation (DSFA) module is proposed to fuse these global features with those of another layer. To verify the effectiveness of the proposed modules, they are embedded into typical one-stage and two-stage object detection frameworks, i.e., Faster R-CNN and YOLO v5L, obtaining POD-F and POD-Y methods, respectively. The proposed methods have been extensively evaluated on three publicly available benchmark datasets, namely SIXray, OPIXray and WIXray. The experimental results show that, compared with existing methods, the proposed POD-Y method can achieve a state-of-the-art detection accuracy. And POD-F can also achieve a competitive detection performance among the two-stage detection methods.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainbow完成签到 ,获得积分10
1秒前
搜集达人应助姚小包子采纳,获得10
2秒前
xs发布了新的文献求助10
3秒前
充电宝应助7U采纳,获得10
6秒前
7秒前
10秒前
艺玲发布了新的文献求助10
14秒前
15秒前
沉静盼易发布了新的文献求助10
15秒前
19秒前
21秒前
21秒前
Joe完成签到,获得积分10
22秒前
小何完成签到,获得积分10
23秒前
柏小霜完成签到 ,获得积分10
23秒前
姚小包子完成签到,获得积分10
24秒前
26秒前
L_MD完成签到,获得积分10
26秒前
姚小包子发布了新的文献求助10
27秒前
狂炫一大晚完成签到 ,获得积分10
28秒前
劲秉应助......采纳,获得10
29秒前
成就的平卉完成签到,获得积分10
30秒前
尼仲星完成签到 ,获得积分10
36秒前
呆萌小鸭子完成签到 ,获得积分20
37秒前
38秒前
波鲁鲁爱喝酸奶完成签到 ,获得积分10
39秒前
健忘捕完成签到 ,获得积分10
42秒前
Xshirley205发布了新的文献求助10
44秒前
华仔应助小煤球采纳,获得10
47秒前
楠楠2001完成签到 ,获得积分10
51秒前
充电宝应助负责丹亦采纳,获得10
1分钟前
1分钟前
李洁完成签到 ,获得积分10
1分钟前
1分钟前
烟花应助小陈加油呀采纳,获得10
1分钟前
果果发布了新的文献求助10
1分钟前
1分钟前
在水一方应助果果采纳,获得10
1分钟前
科研通AI2S应助温乐松采纳,获得10
1分钟前
果果完成签到,获得积分20
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466733
求助须知:如何正确求助?哪些是违规求助? 3059521
关于积分的说明 9066830
捐赠科研通 2750012
什么是DOI,文献DOI怎么找? 1508876
科研通“疑难数据库(出版商)”最低求助积分说明 697115
邀请新用户注册赠送积分活动 696896