已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Emergency logistics network optimization with time window assignment

计算机科学 车辆路径问题 运筹学 分类 布线(电子设计自动化) 帕累托原理 多目标优化 运营管理 计算机网络 工程类 机器学习 程序设计语言
作者
Yong Wang,Xiuwen Wang,Jianxin Fan,Zheng Wang,Lu Zhen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 119145-119145 被引量:21
标识
DOI:10.1016/j.eswa.2022.119145
摘要

During natural disasters or accidents, an emergency logistics network aims to ensure the distribution of relief supplies to victims in time and efficiently. When the coronavirus disease 2019 (COVID-19) emerged, the government closed the outbreak areas to control the risk of transmission. The closed areas were divided into high-risk and middle-/low-risk areas, and travel restrictions were enforced in the different risk areas. The distribution of daily essential supplies to residents in the closed areas became a major challenge for the government. This study introduces a new variant of the vehicle routing problem with travel restrictions in closed areas called the two-echelon emergency vehicle routing problem with time window assignment (2E-EVRPTWA). 2E-EVRPTWA involves transporting goods from distribution centers (DCs) to satellites in high-risk areas in the first echelon and delivering goods from DCs or satellites to customers in the second echelon. Vehicle sharing and time window assignment (TWA) strategies are applied to optimize the transportation resource configuration and improve the operational efficiency of the emergency logistics network. A tri-objective mathematical model for 2E-EVRPTWA is also constructed to minimize the total operating cost, total delivery time, and number of vehicles. A multi-objective adaptive large neighborhood search with split algorithm (MOALNS-SA) is proposed to obtain the Pareto optimal solution for 2E-EVRPTWA. The split algorithm (SA) calculates the objective values associated with each solution and assigns multiple trips to shared vehicles. A non-dominated sorting strategy is used to retain the optimal labels obtained with the SA algorithm and evaluate the quality of the multi-objective solution. The TWA strategy embedded in MOALNS-SA assigns appropriate candidate time windows to customers. The proposed MOALNS-SA produces results that are comparable with the CPLEX solver and those of the self-learning non-dominated sorting genetic algorithm-II, multi-objective ant colony algorithm, and multi-objective particle swarm optimization algorithm for 2E-EVRPTWA. A real-world COVID-19 case study from Chongqing City, China, is performed to test the performance of the proposed model and algorithm. This study helps the government and logistics enterprises design an efficient, collaborative, emergency logistics network, and promote the healthy and sustainable development of cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨小桐发布了新的文献求助10
刚刚
chanjed关注了科研通微信公众号
刚刚
阳阳阳完成签到 ,获得积分10
1秒前
2秒前
乐正尔竹发布了新的文献求助10
3秒前
3秒前
碧蓝的凡柔完成签到,获得积分10
4秒前
美好书瑶发布了新的文献求助10
6秒前
8秒前
10秒前
满当当完成签到,获得积分10
11秒前
乐正尔竹完成签到,获得积分20
12秒前
Sooinlee发布了新的文献求助10
15秒前
15秒前
鲤鱼坤发布了新的文献求助10
17秒前
跳跃的摩托完成签到 ,获得积分10
17秒前
19秒前
20秒前
20秒前
20秒前
情怀应助Xdz采纳,获得10
22秒前
丘比特应助佳期采纳,获得10
22秒前
22秒前
Hart完成签到 ,获得积分10
23秒前
Dan完成签到,获得积分10
24秒前
24秒前
能量球发布了新的文献求助10
24秒前
chanjed发布了新的文献求助10
25秒前
小陈干饭发布了新的文献求助10
25秒前
年鱼精发布了新的文献求助10
27秒前
28秒前
二十八化生完成签到 ,获得积分10
29秒前
稳重元冬发布了新的文献求助10
30秒前
31秒前
32秒前
美好书瑶完成签到,获得积分10
32秒前
佳期发布了新的文献求助10
35秒前
草田苗完成签到,获得积分10
36秒前
lyp完成签到 ,获得积分10
37秒前
愉快凉面完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136894
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783497
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954