Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Y园园园园采纳,获得10
刚刚
加油发布了新的文献求助10
刚刚
CC发布了新的文献求助30
刚刚
yzy发布了新的文献求助30
刚刚
老猫完成签到,获得积分10
1秒前
大个应助balabala采纳,获得10
1秒前
奈何桥尾完成签到,获得积分10
1秒前
2秒前
思源应助诸糜采纳,获得10
2秒前
苗条忆安完成签到,获得积分10
2秒前
在水一方应助senlin采纳,获得10
2秒前
sxx完成签到,获得积分10
2秒前
阳静发布了新的文献求助10
2秒前
3秒前
饶丹完成签到,获得积分10
3秒前
咯咯葛完成签到,获得积分10
3秒前
huangtao发布了新的文献求助30
3秒前
故人发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
内容涉嫌违规完成签到,获得积分10
5秒前
key完成签到,获得积分10
5秒前
开开心心的开心完成签到,获得积分10
5秒前
7秒前
泡沫完成签到,获得积分10
7秒前
梅江发布了新的文献求助10
7秒前
lilycat完成签到,获得积分10
7秒前
Meyako应助郭郭采纳,获得10
8秒前
BowieHuang应助bdJ采纳,获得10
8秒前
MSYzack完成签到,获得积分10
8秒前
无辜凡雁发布了新的文献求助10
8秒前
921完成签到,获得积分10
8秒前
9秒前
清仔发布了新的文献求助10
9秒前
hdbys发布了新的文献求助10
9秒前
NexusExplorer应助PINk采纳,获得10
9秒前
科研通AI2S应助hanli采纳,获得10
9秒前
9秒前
9秒前
舒克大王完成签到,获得积分10
9秒前
12345发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646071
求助须知:如何正确求助?哪些是违规求助? 4770105
关于积分的说明 15032959
捐赠科研通 4804652
什么是DOI,文献DOI怎么找? 2569176
邀请新用户注册赠送积分活动 1526218
关于科研通互助平台的介绍 1485748