Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助youknowdcf采纳,获得10
刚刚
wanwei完成签到,获得积分10
1秒前
1秒前
苗佳威完成签到,获得积分10
1秒前
李健应助暖暖采纳,获得10
1秒前
鲜艳的无极完成签到,获得积分20
2秒前
乔尔司空完成签到,获得积分10
2秒前
拼搏迎梦完成签到,获得积分10
2秒前
tamaco完成签到,获得积分10
2秒前
一二完成签到,获得积分10
2秒前
红星路吃饼子的派大星完成签到 ,获得积分10
2秒前
shijin完成签到,获得积分10
2秒前
WZH完成签到,获得积分10
3秒前
3秒前
旺仔先生完成签到,获得积分0
3秒前
Scout完成签到,获得积分10
3秒前
XW完成签到,获得积分10
4秒前
啾比文完成签到,获得积分10
4秒前
wanci应助ferritin采纳,获得10
4秒前
烟花应助ferritin采纳,获得10
4秒前
lalala发布了新的文献求助10
4秒前
土豪的听筠完成签到,获得积分10
5秒前
min20210429完成签到,获得积分10
5秒前
6秒前
落寞天玉完成签到,获得积分10
6秒前
zik应助已秃采纳,获得10
7秒前
Akim应助tjnusq采纳,获得10
7秒前
七月完成签到,获得积分10
7秒前
7秒前
silin完成签到,获得积分10
7秒前
李雨完成签到,获得积分10
8秒前
8秒前
Ava应助英俊亦巧采纳,获得20
8秒前
xz完成签到,获得积分10
8秒前
guozi完成签到,获得积分10
9秒前
吴欢欢完成签到,获得积分10
9秒前
烂漫煎饼完成签到,获得积分10
9秒前
逸翎完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959