Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
ho发布了新的文献求助30
5秒前
笑点低雅琴完成签到,获得积分10
6秒前
urkk发布了新的文献求助10
6秒前
深情安青应助F1采纳,获得10
7秒前
一一一多完成签到 ,获得积分10
7秒前
缓慢的甜瓜完成签到,获得积分10
8秒前
高佳慧发布了新的文献求助50
9秒前
苏芳完成签到,获得积分10
11秒前
13秒前
隐形的非笑完成签到 ,获得积分10
13秒前
zhuangxiong完成签到,获得积分10
14秒前
粗暴的醉卉完成签到,获得积分10
15秒前
0713完成签到,获得积分10
15秒前
seedcode完成签到,获得积分10
15秒前
liaoyinghong完成签到,获得积分20
16秒前
刘烨完成签到 ,获得积分10
16秒前
chrysan完成签到,获得积分10
17秒前
啦啦啦啦发布了新的文献求助10
20秒前
程志强完成签到,获得积分10
20秒前
22秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
24秒前
24秒前
无花果应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
24秒前
bestlsy完成签到 ,获得积分10
26秒前
26秒前
称心易巧发布了新的文献求助10
29秒前
mm发布了新的文献求助10
31秒前
Lucas应助勇往直前采纳,获得10
32秒前
粥粥完成签到 ,获得积分10
32秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378541
求助须知:如何正确求助?哪些是违规求助? 4502955
关于积分的说明 14014761
捐赠科研通 4411567
什么是DOI,文献DOI怎么找? 2423362
邀请新用户注册赠送积分活动 1416284
关于科研通互助平台的介绍 1393703