已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mo完成签到 ,获得积分10
刚刚
2秒前
6秒前
transition发布了新的文献求助10
8秒前
9秒前
超级的人达完成签到 ,获得积分10
11秒前
gao0505完成签到,获得积分10
12秒前
葵花籽完成签到,获得积分10
16秒前
17秒前
友好诗霜完成签到 ,获得积分10
18秒前
Tong123完成签到,获得积分10
19秒前
Dannnn完成签到 ,获得积分10
21秒前
Milktea123完成签到,获得积分10
23秒前
23秒前
干净思远完成签到,获得积分10
24秒前
赘婿应助陨落星辰采纳,获得10
26秒前
李爱国应助聪慧的致远采纳,获得10
26秒前
Able完成签到,获得积分10
30秒前
脱锦涛完成签到 ,获得积分10
34秒前
Meyako完成签到 ,获得积分0
35秒前
36秒前
CipherSage应助hh采纳,获得10
39秒前
陨落星辰发布了新的文献求助10
40秒前
transition发布了新的文献求助10
40秒前
SciGPT应助Chloe采纳,获得10
41秒前
HJJHJH发布了新的文献求助10
42秒前
Cosmosurfer完成签到,获得积分10
46秒前
transition完成签到,获得积分10
47秒前
罗皮特完成签到 ,获得积分10
49秒前
51秒前
田様应助大宝君采纳,获得10
52秒前
53秒前
55秒前
Davidjin发布了新的文献求助10
55秒前
outlast完成签到,获得积分10
56秒前
111发布了新的文献求助10
58秒前
59秒前
善学以致用应助呵呵采纳,获得10
1分钟前
宝可梦大师完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890007
捐赠科研通 4727175
什么是DOI,文献DOI怎么找? 2545923
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236