Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古果发布了新的文献求助100
1秒前
D调的华丽发布了新的文献求助10
1秒前
猕猴桃完成签到 ,获得积分10
1秒前
小荷完成签到,获得积分10
1秒前
高CA完成签到,获得积分10
1秒前
liuhll完成签到,获得积分10
1秒前
小蘑材完成签到,获得积分10
1秒前
blueming完成签到,获得积分10
3秒前
Hidden完成签到,获得积分10
3秒前
zhaoli发布了新的文献求助10
3秒前
adou完成签到,获得积分10
4秒前
隐形的代梅完成签到,获得积分10
4秒前
多多完成签到,获得积分10
4秒前
可爱的函函应助小李采纳,获得10
4秒前
ll完成签到,获得积分10
4秒前
李健应助SASI采纳,获得10
4秒前
文静的从菡完成签到,获得积分10
5秒前
vivy完成签到 ,获得积分10
5秒前
Srishti完成签到,获得积分10
6秒前
huahua发布了新的文献求助10
6秒前
6秒前
夏之茗完成签到,获得积分10
6秒前
Carlo完成签到,获得积分10
6秒前
6秒前
万能的翔王完成签到,获得积分10
6秒前
领导范儿应助lxy采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
自信的竹员外完成签到,获得积分10
9秒前
zxy完成签到,获得积分10
10秒前
10秒前
852应助adou采纳,获得10
10秒前
111发布了新的文献求助10
11秒前
Shi完成签到,获得积分10
11秒前
rong_w发布了新的文献求助10
11秒前
贤惠的一刀完成签到 ,获得积分10
12秒前
豆子完成签到,获得积分10
13秒前
xcc完成签到,获得积分10
13秒前
凶狠的绿兰完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4902316
求助须知:如何正确求助?哪些是违规求助? 4181329
关于积分的说明 12980881
捐赠科研通 3946631
什么是DOI,文献DOI怎么找? 2164732
邀请新用户注册赠送积分活动 1182940
关于科研通互助平台的介绍 1089408