Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郭嘉仪发布了新的文献求助10
1秒前
小北发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
无花果应助偷喝气泡水采纳,获得30
2秒前
wanci应助YY采纳,获得30
2秒前
2秒前
韩XR发布了新的文献求助10
2秒前
曹鹏喜完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
金鱼完成签到,获得积分10
3秒前
3秒前
4秒前
Kopernik发布了新的文献求助10
4秒前
4秒前
不打游戏_完成签到,获得积分10
4秒前
大模型应助liqin采纳,获得10
4秒前
离夜完成签到,获得积分10
5秒前
Bblythe完成签到 ,获得积分10
5秒前
Verritis完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
5秒前
充电宝应助Michael.Hu采纳,获得10
6秒前
Wanda完成签到,获得积分10
7秒前
泥巴派超甜完成签到 ,获得积分10
7秒前
7秒前
crz完成签到,获得积分10
7秒前
chimchim完成签到,获得积分20
7秒前
晓槐完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
离夜发布了新的文献求助10
8秒前
田泽和发布了新的文献求助10
9秒前
12458发布了新的文献求助10
9秒前
9秒前
9秒前
Suen完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188