Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
智慧女孩发布了新的文献求助10
1秒前
叶叶叶发布了新的文献求助10
1秒前
2秒前
Ava应助yang采纳,获得10
2秒前
3秒前
Heartlark完成签到,获得积分10
3秒前
砍柴少年发布了新的文献求助10
3秒前
海东来应助zjw1997采纳,获得30
3秒前
小崔完成签到,获得积分10
4秒前
wisdom发布了新的文献求助10
5秒前
5秒前
6秒前
大菊完成签到,获得积分10
7秒前
zero完成签到,获得积分10
7秒前
shao发布了新的文献求助10
8秒前
9秒前
爱吃榴莲的芒果完成签到,获得积分10
10秒前
一杯月光完成签到,获得积分10
11秒前
Dr彭0923完成签到,获得积分10
11秒前
FashionBoy应助Leemon33采纳,获得10
12秒前
巨炮叔叔完成签到,获得积分10
13秒前
14秒前
垃圾桶完成签到,获得积分10
15秒前
15秒前
无名完成签到,获得积分10
15秒前
16秒前
是小浩啊完成签到,获得积分10
16秒前
17秒前
17秒前
龙猫完成签到,获得积分10
17秒前
vardy发布了新的文献求助10
18秒前
垃圾桶发布了新的文献求助10
18秒前
19秒前
李健应助微笑的冥幽采纳,获得10
19秒前
20秒前
20秒前
无名发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969917
求助须知:如何正确求助?哪些是违规求助? 3514626
关于积分的说明 11175060
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795165
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891