Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TingtingGZ发布了新的文献求助10
刚刚
大模型应助健壮的小之采纳,获得10
1秒前
123lx发布了新的文献求助10
2秒前
零几年发布了新的文献求助10
2秒前
天苍野茫发布了新的文献求助10
3秒前
4秒前
善学以致用应助stefanie采纳,获得10
5秒前
KKKKKKK完成签到 ,获得积分10
6秒前
杨皓婷完成签到,获得积分10
7秒前
情怀应助心平气和采纳,获得20
8秒前
8秒前
9秒前
sinsole完成签到,获得积分10
9秒前
9秒前
10秒前
13秒前
漫才完成签到 ,获得积分10
13秒前
故里完成签到,获得积分10
13秒前
14秒前
菜鸡小尹发布了新的文献求助10
14秒前
Lynth_雪鸮发布了新的文献求助10
14秒前
14秒前
shidewu完成签到,获得积分10
14秒前
15秒前
Owen应助咦yiyi采纳,获得10
15秒前
祖金杰完成签到,获得积分20
15秒前
健壮的小之完成签到,获得积分10
16秒前
16秒前
afatinib完成签到,获得积分10
16秒前
17秒前
17秒前
DI发布了新的文献求助10
17秒前
余芝完成签到 ,获得积分10
17秒前
deserted完成签到,获得积分10
19秒前
菜鸡小尹完成签到,获得积分10
19秒前
大模型应助杨涵采纳,获得10
20秒前
20秒前
心平气和发布了新的文献求助20
20秒前
Suraim完成签到,获得积分10
21秒前
大菊完成签到,获得积分10
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672