Privacy-Preserving Regulation Capacity Evaluation for HVAC Systems in Heterogeneous Buildings Based on Federated Learning and Transfer Learning

暖通空调 计算机科学 学习迁移 信息隐私 楼宇自动化 需求响应 楼宇管理系统 数据建模 空调 机器学习 人工智能 工程类 计算机安全 数据库 热力学 电气工程 物理 机械工程 控制(管理)
作者
Zhenyi Wang,Peipei Yu,Hongcai Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (5): 3535-3549 被引量:9
标识
DOI:10.1109/tsg.2022.3231592
摘要

Heating, ventilation, and air conditioning (HVAC) systems in buildings have great potential to provide regulation capacity that is leveraged to maintain the balance of supply and demand in the power system. In order to make full use of HVAC's regulation capacity, it is important to accurately evaluate it ahead of time. Because physical model-based approaches are hard to implement and highly personalized for each building, data-driven approaches are preferable for this capacity evaluation. However, given the insufficient data for individual buildings and buildings' potential unwillingness to share their data because of privacy concerns, it is extremely challenging to build a high-performance data-driven regulation capacity evaluation model. In this paper, we propose a privacy-preserving framework that combines federated learning and transfer learning to evaluate the regulation capacity of HVAC systems in heterogeneous buildings. Specifically, a classified federated learning algorithm is proposed to build capacity evaluation models of HVAC systems for different building types. Each building trains its model locally without sharing data with other buildings to preserve privacy. The algorithm also tackles data insufficiency and achieves high evaluation accuracy. In addition, we design a cross-type transfer learning algorithm to enhance model generalization and further address data deficiency. A protocol is created for the above two algorithms to protect privacy and security. Finally, numerical case studies are conducted to validate the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助儒雅友绿采纳,获得10
刚刚
zxcv23发布了新的文献求助10
刚刚
1秒前
花开富贵发布了新的文献求助10
1秒前
闪闪的梦柏完成签到 ,获得积分10
1秒前
自由凌丝发布了新的文献求助10
1秒前
缥缈的平露完成签到,获得积分10
1秒前
SSSYYY完成签到,获得积分10
1秒前
小花生完成签到,获得积分20
2秒前
斯文败类应助haoyooo采纳,获得10
2秒前
柒玖完成签到,获得积分20
3秒前
...完成签到,获得积分10
3秒前
海涛完成签到,获得积分10
3秒前
3秒前
3秒前
hhh应助温暖的蚂蚁采纳,获得10
4秒前
小鹿发布了新的文献求助10
4秒前
臭屁王完成签到,获得积分20
4秒前
保命要紧完成签到,获得积分10
4秒前
5秒前
细腻的山水完成签到 ,获得积分10
5秒前
5秒前
Serein完成签到,获得积分10
6秒前
6秒前
zero发布了新的文献求助10
6秒前
seedcode完成签到,获得积分10
7秒前
善学以致用应助嘉嘉琦采纳,获得10
8秒前
科研八戒完成签到,获得积分10
8秒前
小花完成签到,获得积分20
8秒前
KK完成签到,获得积分10
8秒前
慕之发布了新的文献求助150
8秒前
9秒前
小七完成签到,获得积分10
9秒前
难摧完成签到,获得积分10
9秒前
中中中中中呀完成签到,获得积分10
9秒前
肥肥完成签到 ,获得积分10
10秒前
所所应助忧心的映真采纳,获得20
10秒前
多吃一口芝士完成签到 ,获得积分10
10秒前
科研包完成签到,获得积分10
10秒前
臭屁王发布了新的文献求助10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455981
求助须知:如何正确求助?哪些是违规求助? 3051202
关于积分的说明 9025195
捐赠科研通 2739990
什么是DOI,文献DOI怎么找? 1503026
科研通“疑难数据库(出版商)”最低求助积分说明 694666
邀请新用户注册赠送积分活动 693488