Road marking defect detection based on CFG_SI_YOLO network

计算机科学 光学(聚焦) 相似性(几何) 编码(集合论) 人工智能 联营 功能(生物学) 精确性和召回率 计算机视觉 模式识别(心理学) 数据挖掘 图像(数学) 光学 物理 集合(抽象数据类型) 生物 程序设计语言 进化生物学
作者
Tong Chen,Jiguang Dai,Bihan Dong,Tengda Zhang,Wenhao Xu,Ziye Wang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:153: 104614-104614 被引量:1
标识
DOI:10.1016/j.dsp.2024.104614
摘要

Existing road marking detection primarily focuses on the direction, position, and color of road markings. However, clear and accurate road markings directly impact issues such as directional guidance, lane selection, speed limits, and parking positions. Therefore, we introduce the CFG_SI_YOLO model for road marking defect detection. This model introduces a multi-channel CoordConv module, which enhances the network's focus on fine details based on the distribution characteristics of road markings defect. This helps prevent the loss of road marking information caused by model compression and pooling operations; Moreover, the model introduces the Focal-EIoU loss function to address the issue of imbalanced samples between easy and difficult cases. Additionally, the GELU activation function is incorporated to prevent gradient explosions, enhance the network's non-linear expressiveness, and improve the detection accuracy of the model. Finally, we add a similarity attention module to enhance the network's focus on the target, reduce interference from other objects, and mitigate false detection defects caused by inter-class similarity. Experiments conducted on a self-made dataset containing various types of road markings have shown that our approach achieved Precision, Recall, F1, IoU, and mAP of 85.7%, 85.8%, 85.7%, 75.1% and 82.8%, respectively. These results are significantly better than other methods, confirming the effectiveness and feasibility of our approach. Our code and results can be found on https://github.com/ly6660/Road_marking_line_code_data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无与伦比完成签到,获得积分10
刚刚
Lynn发布了新的文献求助10
刚刚
jluzz完成签到,获得积分10
1秒前
yourself发布了新的文献求助10
1秒前
Biyanchao发布了新的文献求助10
1秒前
1秒前
1秒前
椰子发布了新的文献求助10
1秒前
bkagyin应助chen采纳,获得10
1秒前
YTTT完成签到,获得积分10
1秒前
2秒前
贝肯尼发布了新的文献求助10
2秒前
刘齐完成签到,获得积分10
2秒前
2秒前
TPZJS完成签到,获得积分10
2秒前
麦满分发布了新的文献求助10
2秒前
汉堡包应助肖圣凯采纳,获得10
3秒前
所所应助二二春采纳,获得10
4秒前
成就的飞柏完成签到 ,获得积分10
4秒前
zero完成签到,获得积分10
4秒前
共享精神应助仙林AK47采纳,获得10
4秒前
wuyan发布了新的文献求助10
4秒前
愉快的新波完成签到,获得积分10
5秒前
5秒前
11发布了新的文献求助10
6秒前
打打应助刘齐采纳,获得10
6秒前
轩辕幻香发布了新的文献求助10
7秒前
WNL发布了新的文献求助10
7秒前
成就的飞柏关注了科研通微信公众号
7秒前
7秒前
8秒前
bkagyin应助小白采纳,获得20
9秒前
尘林完成签到,获得积分10
9秒前
9秒前
梦溪发布了新的文献求助10
9秒前
虹虹完成签到,获得积分10
10秒前
冬天发布了新的文献求助10
10秒前
zzzz146完成签到,获得积分10
11秒前
jiang完成签到,获得积分10
11秒前
冷酷莫言发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798