已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Road marking defect detection based on CFG_SI_YOLO network

计算机科学 光学(聚焦) 相似性(几何) 编码(集合论) 人工智能 联营 功能(生物学) 精确性和召回率 计算机视觉 模式识别(心理学) 数据挖掘 图像(数学) 光学 物理 集合(抽象数据类型) 生物 程序设计语言 进化生物学
作者
Tong Chen,Jiguang Dai,Bihan Dong,Tengda Zhang,Wenhao Xu,Ziye Wang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:153: 104614-104614 被引量:5
标识
DOI:10.1016/j.dsp.2024.104614
摘要

Existing road marking detection primarily focuses on the direction, position, and color of road markings. However, clear and accurate road markings directly impact issues such as directional guidance, lane selection, speed limits, and parking positions. Therefore, we introduce the CFG_SI_YOLO model for road marking defect detection. This model introduces a multi-channel CoordConv module, which enhances the network's focus on fine details based on the distribution characteristics of road markings defect. This helps prevent the loss of road marking information caused by model compression and pooling operations; Moreover, the model introduces the Focal-EIoU loss function to address the issue of imbalanced samples between easy and difficult cases. Additionally, the GELU activation function is incorporated to prevent gradient explosions, enhance the network's non-linear expressiveness, and improve the detection accuracy of the model. Finally, we add a similarity attention module to enhance the network's focus on the target, reduce interference from other objects, and mitigate false detection defects caused by inter-class similarity. Experiments conducted on a self-made dataset containing various types of road markings have shown that our approach achieved Precision, Recall, F1, IoU, and mAP of 85.7%, 85.8%, 85.7%, 75.1% and 82.8%, respectively. These results are significantly better than other methods, confirming the effectiveness and feasibility of our approach. Our code and results can be found on https://github.com/ly6660/Road_marking_line_code_data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穷鬼爬行完成签到,获得积分10
刚刚
2秒前
fang完成签到 ,获得积分10
3秒前
岂曰无衣完成签到 ,获得积分10
4秒前
鑫淼发布了新的文献求助10
5秒前
浮游应助ACE采纳,获得10
5秒前
9秒前
英勇兔子完成签到 ,获得积分10
9秒前
9秒前
Sarahminn发布了新的文献求助10
11秒前
隐形曼青应助77采纳,获得10
11秒前
科研通AI5应助Elsie Liu采纳,获得10
13秒前
13秒前
胡姬花发布了新的文献求助10
14秒前
ss完成签到,获得积分20
16秒前
17秒前
18秒前
basil完成签到,获得积分10
19秒前
可爱的函函应助橙子采纳,获得10
22秒前
23秒前
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
24秒前
哈哈哈发布了新的文献求助10
24秒前
星辰大海应助科研通管家采纳,获得20
24秒前
所所应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得150
24秒前
科研通AI6应助科研通管家采纳,获得150
24秒前
NexusExplorer应助科研通管家采纳,获得30
24秒前
24秒前
加缪应助科研通管家采纳,获得50
24秒前
乐乐应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得30
25秒前
加缪应助科研通管家采纳,获得50
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089774
求助须知:如何正确求助?哪些是违规求助? 4304433
关于积分的说明 13414246
捐赠科研通 4130056
什么是DOI,文献DOI怎么找? 2262033
邀请新用户注册赠送积分活动 1266013
关于科研通互助平台的介绍 1200665