Development of the gas chromatography/mass spectrometry-based aroma designer capable of modifying volatile chemical compositions in complex odors

芳香 化学 挥发性有机化合物 质谱法 气相色谱-质谱法 嗅觉测定 色谱法 气相色谱法 有机化学 食品科学
作者
Kaname Obara,Reiko Uenoyama,Y. OBATA,Masao Miyazaki
出处
期刊:Chemical Senses [Oxford University Press]
卷期号:49 被引量:2
标识
DOI:10.1093/chemse/bjae007
摘要

Abstract Many volatile organic compounds (VOCs) are used to produce various commercial products with aromas mimicking natural products. The VOCs responsible for aromas have been identified from many natural products. The current major strategy is to analyze chemical compositions and aroma qualities of individual VOCs using gas chromatography/mass spectrometry (GC/MS) and GC-olfactometry. However, such analyses cannot determine whether candidate VOCs contribute to the characteristic aroma in mixtures of many VOCs. In this study, we developed a GC/MS-based VOC collection/omission system that can modify the VOC compositions of samples easily and rapidly. The system is composed of GC/MS with a switching unit that can change gas flow routes between MS and a VOC collection device. We first applied this system to prepare gas samples for omission tests, and the aroma qualities of VOC mixtures with and without some VOCs were evaluated by panelists. If aroma qualities were different between the 2 samples, the omitted VOCs were likely key odorants. By collecting VOCs in a gas bag attached to the collection device and transferring some VOCs to MS, specific VOCs could be omitted easily from the VOC mixture. The system could prepare omission samples without chemical identification, preparation of each VOC, and laborious techniques for mixing VOCs, thus overcoming the limitations of previous methods of sample preparation. Finally, the system was used to prepare artificial aromas by replacing VOC compositions between different samples for screening of key odorants. In conclusion, the system developed here can improve aroma research by identifying key odorants from natural products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
juanjuan应助科研通管家采纳,获得10
2秒前
Quinny应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得20
2秒前
丽丽完成签到,获得积分10
2秒前
3秒前
FashionBoy应助zy0411采纳,获得10
3秒前
无聊的霸应助郭郭采纳,获得10
3秒前
3秒前
3秒前
3秒前
NexusExplorer应助SYY采纳,获得10
4秒前
4秒前
yhchow0204给lululu的求助进行了留言
4秒前
Liexinun发布了新的文献求助10
5秒前
Vincent发布了新的文献求助10
6秒前
阳光衣发布了新的文献求助30
6秒前
A0228号卫星完成签到 ,获得积分10
7秒前
星辰大海应助liyunma采纳,获得10
7秒前
完美世界应助海孩子采纳,获得10
7秒前
有魅力的沧海完成签到 ,获得积分10
7秒前
皓轩发布了新的文献求助10
8秒前
8秒前
9秒前
oookkay完成签到,获得积分20
9秒前
10秒前
Henry发布了新的文献求助10
10秒前
10秒前
13秒前
激情的诗柳完成签到,获得积分10
13秒前
简单的丑完成签到 ,获得积分10
13秒前
芒果好高发布了新的文献求助10
15秒前
善学以致用应助Liexinun采纳,获得10
15秒前
傻傻完成签到,获得积分10
16秒前
gaohigh完成签到 ,获得积分10
16秒前
Vincent完成签到,获得积分10
16秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570