亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-purposed diagnostic system for ovarian endometrioma using CNN and transformer networks in ultrasound

计算机科学 人工智能 分割 深度学习 二元分类 超声波 机器学习 模式识别(心理学) 放射科 医学 支持向量机
作者
Yishuo Li,Baihua Zhao,Lieming Wen,Ruobing Huang,Dong Ni
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 105923-105923 被引量:3
标识
DOI:10.1016/j.bspc.2023.105923
摘要

Ovarian endometrioma (OMA) is one of the most common ovarian cysts worldwide, seriously impairing the reproductive function of females. Accurate diagnosis is of great significance for appropriate clinical treatment. Nowadays, the definitive diagnosis of OMA is based on its clinical manifestations, while ultrasound is widely employed as a routine diagnostic modality for OMA. However, the ultrasound diagnosis of OMA, which has various challenges, is contingent upon the expertise and experience of doctors. To overcome this, we propose an automated method based on deep learning, which performs cyst segmentation and binary OMA (i.e. OMA and non-OMA) classification simultaneously. The features provided by the segmentation branch are fused with the classification features with the assistance of the attention mechanism. In this manner, the classification branch can better focus on the cyst regions of the image and learn more specific information, thereby improving the accuracy of classification. We evaluate the method on an extensive dataset containing 1501 images. The proposed model achieved a classification accuracy of 91.36 % and a Dice score of 85.42 %, which outperformed several popular networks involved in this study. What’s more, further reader study revealed that our model demonstrates comparable performance with that of the senior doctors, while superior to that of the junior doctors. To the best of our knowledge, this is the first deep learning method specially designed for OMA diagnosis. This indicates that our model has the potential to assist junior doctors in improving their diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39秒前
41秒前
44秒前
rr发布了新的文献求助10
45秒前
m赤子心完成签到 ,获得积分10
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
JLLi完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
君寻完成签到 ,获得积分10
3分钟前
皮皮完成签到 ,获得积分10
3分钟前
dracovu完成签到,获得积分10
3分钟前
思源应助等待的花生采纳,获得10
4分钟前
yelide发布了新的文献求助30
4分钟前
今后应助可靠的寒风采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
852应助科研通管家采纳,获得10
5分钟前
5分钟前
顺心盼山发布了新的文献求助10
5分钟前
5分钟前
Wang完成签到 ,获得积分20
5分钟前
5分钟前
顾矜应助顺心盼山采纳,获得10
5分钟前
5分钟前
fan发布了新的文献求助10
6分钟前
共享精神应助可靠的寒风采纳,获得10
6分钟前
沙海沉戈完成签到,获得积分0
6分钟前
CATH完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
Jack发布了新的文献求助30
7分钟前
深情安青应助don采纳,获得10
7分钟前
Hello应助Jack采纳,获得10
7分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335359
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614028
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447401
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974