Multi-purposed diagnostic system for ovarian endometrioma using CNN and transformer networks in ultrasound

计算机科学 人工智能 分割 深度学习 二元分类 超声波 机器学习 模式识别(心理学) 放射科 医学 支持向量机
作者
Y. Li,Baihua Zhao,Liang Wen,Ruobing Huang,Dong Ni
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 105923-105923
标识
DOI:10.1016/j.bspc.2023.105923
摘要

Ovarian endometrioma (OMA) is one of the most common ovarian cysts worldwide, seriously impairing the reproductive function of females. Accurate diagnosis is of great significance for appropriate clinical treatment. Nowadays, the definitive diagnosis of OMA is based on its clinical manifestations, while ultrasound is widely employed as a routine diagnostic modality for OMA. However, the ultrasound diagnosis of OMA, which has various challenges, is contingent upon the expertise and experience of doctors. To overcome this, we propose an automated method based on deep learning, which performs cyst segmentation and binary OMA (i.e. OMA and non-OMA) classification simultaneously. The features provided by the segmentation branch are fused with the classification features with the assistance of the attention mechanism. In this manner, the classification branch can better focus on the cyst regions of the image and learn more specific information, thereby improving the accuracy of classification. We evaluate the method on an extensive dataset containing 1501 images. The proposed model achieved a classification accuracy of 91.36 % and a Dice score of 85.42 %, which outperformed several popular networks involved in this study. What’s more, further reader study revealed that our model demonstrates comparable performance with that of the senior doctors, while superior to that of the junior doctors. To the best of our knowledge, this is the first deep learning method specially designed for OMA diagnosis. This indicates that our model has the potential to assist junior doctors in improving their diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
8秒前
Hello应助Lyric采纳,获得10
12秒前
surefire发布了新的文献求助10
13秒前
YAQII完成签到,获得积分10
15秒前
啦啦累完成签到,获得积分10
15秒前
17秒前
20秒前
墨菲完成签到,获得积分10
21秒前
三巡完成签到,获得积分10
21秒前
12312发布了新的文献求助10
21秒前
隐形曼青应助zxb采纳,获得10
22秒前
22秒前
23秒前
Charail完成签到,获得积分20
24秒前
薛之谦关注了科研通微信公众号
25秒前
26秒前
吾身无拘发布了新的文献求助50
26秒前
26秒前
12312完成签到,获得积分10
27秒前
32秒前
36秒前
许学文许完成签到,获得积分10
40秒前
寒月如雪发布了新的文献求助10
40秒前
Owen应助迷路以筠采纳,获得10
40秒前
xiao_niu完成签到,获得积分10
42秒前
42秒前
ACE天凉好个秋完成签到,获得积分10
43秒前
方俊驰发布了新的文献求助10
50秒前
51秒前
53秒前
英姑应助初夏采纳,获得10
57秒前
陈时懿发布了新的文献求助10
57秒前
清新的哈密瓜完成签到 ,获得积分10
59秒前
1分钟前
吾身无拘完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助认真的rain采纳,获得10
1分钟前
田様应助morning采纳,获得10
1分钟前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
Understanding Autism and Autistic Functioning 950
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Eric Dunning and the Sociology of Sport 850
QMS18Ed2 | process management. 2nd ed 800
Operative Techniques in Pediatric Orthopaedic Surgery 510
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2915256
求助须知:如何正确求助?哪些是违规求助? 2553517
关于积分的说明 6909030
捐赠科研通 2215300
什么是DOI,文献DOI怎么找? 1177645
版权声明 588353
科研通“疑难数据库(出版商)”最低求助积分说明 576466