亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-purposed diagnostic system for ovarian endometrioma using CNN and transformer networks in ultrasound

计算机科学 人工智能 分割 深度学习 二元分类 超声波 机器学习 模式识别(心理学) 放射科 医学 支持向量机
作者
Yishuo Li,Baihua Zhao,Lieming Wen,Ruobing Huang,Dong Ni
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 105923-105923 被引量:3
标识
DOI:10.1016/j.bspc.2023.105923
摘要

Ovarian endometrioma (OMA) is one of the most common ovarian cysts worldwide, seriously impairing the reproductive function of females. Accurate diagnosis is of great significance for appropriate clinical treatment. Nowadays, the definitive diagnosis of OMA is based on its clinical manifestations, while ultrasound is widely employed as a routine diagnostic modality for OMA. However, the ultrasound diagnosis of OMA, which has various challenges, is contingent upon the expertise and experience of doctors. To overcome this, we propose an automated method based on deep learning, which performs cyst segmentation and binary OMA (i.e. OMA and non-OMA) classification simultaneously. The features provided by the segmentation branch are fused with the classification features with the assistance of the attention mechanism. In this manner, the classification branch can better focus on the cyst regions of the image and learn more specific information, thereby improving the accuracy of classification. We evaluate the method on an extensive dataset containing 1501 images. The proposed model achieved a classification accuracy of 91.36 % and a Dice score of 85.42 %, which outperformed several popular networks involved in this study. What’s more, further reader study revealed that our model demonstrates comparable performance with that of the senior doctors, while superior to that of the junior doctors. To the best of our knowledge, this is the first deep learning method specially designed for OMA diagnosis. This indicates that our model has the potential to assist junior doctors in improving their diagnostic accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Ride采纳,获得10
2秒前
mzh发布了新的文献求助10
2秒前
Cosmosurfer完成签到,获得积分10
4秒前
冇_完成签到 ,获得积分10
6秒前
7秒前
9秒前
自信萃完成签到,获得积分10
11秒前
机灵的衬衫完成签到 ,获得积分10
12秒前
Adc应助mzh采纳,获得10
16秒前
17秒前
18秒前
NINGMENG发布了新的文献求助10
20秒前
核潜艇很优秀完成签到 ,获得积分0
21秒前
可爱紫文完成签到 ,获得积分10
28秒前
37秒前
稳重母鸡完成签到 ,获得积分10
41秒前
小明完成签到 ,获得积分10
43秒前
47秒前
周大福完成签到 ,获得积分10
48秒前
50秒前
HJX发布了新的文献求助10
51秒前
灵主完成签到 ,获得积分20
52秒前
NINGMENG完成签到,获得积分10
56秒前
ylky发布了新的文献求助50
59秒前
NexusExplorer应助PAIDAXXXX采纳,获得10
1分钟前
1分钟前
Exist完成签到 ,获得积分10
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
1分钟前
HJX完成签到,获得积分10
1分钟前
第二支羽毛完成签到,获得积分10
1分钟前
1分钟前
yoyo完成签到 ,获得积分10
1分钟前
PAIDAXXXX发布了新的文献求助10
1分钟前
1分钟前
YUEER发布了新的文献求助10
1分钟前
1分钟前
amengptsd完成签到,获得积分10
1分钟前
CipherSage应助PAIDAXXXX采纳,获得10
1分钟前
阳光血茗完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870572
求助须知:如何正确求助?哪些是违规求助? 6463600
关于积分的说明 15664361
捐赠科研通 4986645
什么是DOI,文献DOI怎么找? 2688918
邀请新用户注册赠送积分活动 1631295
关于科研通互助平台的介绍 1589348