Predictive phage therapy for Escherichia coli urinary tract infections: Cocktail selection for therapy based on machine learning models

大肠杆菌 噬菌体疗法 抗生素耐药性 基因组 微生物学 抗生素 计算生物学 生物 噬菌体 遗传学 基因
作者
Marianne Keith,Alba Park de la Torriente,Salvatore Camiolo,Adriana Vallejo-Trujillo,Sean P. McAteer,Gavin K. Paterson,Alison S. Low,David L. Gally
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (12) 被引量:4
标识
DOI:10.1073/pnas.2313574121
摘要

This study supports the development of predictive bacteriophage (phage) therapy: the concept of phage cocktail selection to treat a bacterial infection based on machine learning (ML) models. For this purpose, ML models were trained on thousands of measured interactions between a panel of phage and sequenced bacterial isolates. The concept was applied to Escherichia coli associated with urinary tract infections. This is an important common infection in humans and companion animals from which multidrug-resistant (MDR) bloodstream infections can originate. The global threat of MDR infection has reinvigorated international efforts into alternatives to antibiotics including phage therapy. E. coli exhibit extensive genome-level variation due to horizontal gene transfer via phage and plasmids. Associated with this, phage selection for E. coli is difficult as individual isolates can exhibit considerable variation in phage susceptibility due to differences in factors important to phage infection including phage receptor profiles and resistance mechanisms. The activity of 31 phage was measured on 314 isolates with growth curves in artificial urine. Random Forest models were built for each phage from bacterial genome features, and the more generalist phage, acting on over 20% of the bacterial population, exhibited F1 scores of >0.6 and could be used to predict phage cocktails effective against previously untested strains. The study demonstrates the potential of predictive ML models which integrate bacterial genomics with phage activity datasets allowing their use on data derived from direct sequencing of clinical samples to inform rapid and effective phage therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Likx发布了新的文献求助10
刚刚
1秒前
1秒前
寒月如雪发布了新的文献求助10
1秒前
共享精神应助程风破浪采纳,获得10
2秒前
上官若男应助嵇晓旋采纳,获得10
2秒前
2秒前
2秒前
比耶完成签到,获得积分10
4秒前
研友_VZG7GZ应助111采纳,获得10
5秒前
carpybala发布了新的文献求助10
7秒前
情怀应助得偿所愿采纳,获得10
8秒前
347完成签到,获得积分10
8秒前
223344发布了新的文献求助10
8秒前
9秒前
汉堡包应助何博士采纳,获得10
11秒前
11秒前
12秒前
橘子石榴应助寒月如雪采纳,获得10
13秒前
14秒前
15秒前
嵇晓旋发布了新的文献求助10
17秒前
浏阳河完成签到,获得积分20
19秒前
111发布了新的文献求助10
22秒前
激昂的君浩完成签到,获得积分10
22秒前
leon完成签到,获得积分10
23秒前
lyp7028完成签到,获得积分10
24秒前
酷波er应助ZengQiu采纳,获得10
24秒前
27秒前
27秒前
mypang完成签到,获得积分10
30秒前
32秒前
搜集达人应助小葫芦采纳,获得10
32秒前
FashionBoy应助223344采纳,获得10
32秒前
星辰大海应助小周同学采纳,获得10
32秒前
ali完成签到,获得积分10
32秒前
33秒前
钱多多应助美满的稚晴采纳,获得150
34秒前
ZengQiu完成签到,获得积分20
36秒前
李爱国应助传统的芒果采纳,获得10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155953
求助须知:如何正确求助?哪些是违规求助? 2807296
关于积分的说明 7872331
捐赠科研通 2465597
什么是DOI,文献DOI怎么找? 1312272
科研通“疑难数据库(出版商)”最低求助积分说明 630017
版权声明 601905