Nanofluid‐Guided Janus Membrane for High‐Efficiency Electricity Generation from Water Evaporation

纳米流体 杰纳斯 材料科学 蒸发 发电 功率密度 化学工程 纳米技术 化学物理 功率(物理) 热力学 化学 纳米颗粒 生物化学 物理 工程类
作者
Yongxiang Han,Yanlei Wang,Mi Wang,Hao Dong,Yi Nie,Suojiang Zhang,Hongyan He
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (23) 被引量:5
标识
DOI:10.1002/adma.202312209
摘要

Abstract Harvesting electricity from widespread water evaporation provides an alternative route to cleaner power generation technology. However, current evaporation power generation (EPG) mainly depends on the dissociation process of certain functional groups (e.g., SO 3 H) in water, which suffers from low power density and short‐term output. Herein, the Janus membrane is prepared by combining nanofluid and water‐grabbing material for EPG, where the nanoconfined ionic liquids (NCILs) serve as ion sources instead of the functional groups. Benefiting from the selective and fast transport of anions in NCILs, such EPG demonstrates excellent power performance with a voltage of 0.63 V, a short‐circuit current of 140 µA, and a maximum power density of 16.55 µW cm −2 while operating for at least 180 h consistently. Molecular dynamics (MD) simulation and surface potential analysis reveal the molecular mechanism, that is, the diffusion of Cl − anions during evaporation is much faster than that of cations, generating the voltage and current across the membrane. Furthermore, the device performs well in varying environmental conditions, including different water temperatures and sources of evaporating water, showcasing its adaptability and integrability. Overall, the nanofluid‐guided Janus membrane can efficiently transform low‐grade thermal energy in evaporation into electricity, showing a competitive advantage over other sustainable applied approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰森斯坦虎完成签到,获得积分10
刚刚
刚刚
1秒前
叭叭完成签到,获得积分10
1秒前
Accept完成签到,获得积分10
1秒前
W哇完成签到,获得积分10
2秒前
肖肖完成签到,获得积分10
2秒前
2秒前
super小萌萌完成签到,获得积分10
2秒前
April完成签到 ,获得积分10
2秒前
雪白问兰应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得20
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
maox1aoxin应助科研通管家采纳,获得80
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
zhong完成签到,获得积分10
3秒前
36456657应助科研通管家采纳,获得10
3秒前
100完成签到,获得积分20
3秒前
领导范儿应助科研通管家采纳,获得30
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
控制小弟应助科研通管家采纳,获得10
3秒前
4秒前
SciGPT应助从容的幻然采纳,获得30
4秒前
无情念之完成签到,获得积分20
4秒前
YL完成签到,获得积分10
4秒前
4秒前
京言完成签到,获得积分10
4秒前
小宇发布了新的文献求助10
5秒前
5秒前
大胆的小白菜完成签到,获得积分10
5秒前
不是省油的灯完成签到,获得积分10
6秒前
小管完成签到,获得积分20
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672